
indexmodules |next |previous |

Quick search Go |

indexmodules |next |previous |

Quick search Go |

 Python » English 3.11.1 3.11.1 Documentation » The Python Standard Library » Built-in Functions

[1]

Built-in Functions
The Python interpreter has a number of functions and types built into it that are always available. They
are listed here in alphabetical order.

Built-in Functions

A
abs()
aiter()
all()
any()
anext()
ascii()

B
bin()
bool()
breakpoint()
bytearray()
bytes()

C
callable()
chr()
classmethod()
compile()
complex()

D
delattr()
dict()
dir()
divmod()

E
enumerate()
eval()
exec()

F
filter()
float()
format()
frozenset()

G
getattr()
globals()

H
hasattr()
hash()
help()
hex()

I
id()
input()
int()
isinstance()
issubclass()
iter()

L
len()
list()
locals()

M
map()
max()
memoryview()
min()

N
next()

O
object()
oct()
open()
ord()

P
pow()
print()
property()

R
range()
repr()
reversed()
round()

S
set()
setattr()
slice()
sorted()
staticmethod()
str()
sum()
super()

T
tuple()
type()

V
vars()

Z
zip()

_
__import__()

abs(x)
Return the absolute value of a number. The argument may be an integer, a floating point number, or
an object implementing __abs__(). If the argument is a complex number, its magnitude is returned.

aiter(async_iterable)
Return an asynchronous iterator for an asynchronous iterable. Equivalent to calling x.__aiter__().

Note: Unlike iter(), aiter() has no 2-argument variant.

New in version 3.10.

all(iterable)
Return True if all elements of the iterable are true (or if the iterable is empty). Equivalent to:

awaitable anext(async_iterator)
awaitable anext(async_iterator, default)

When awaited, return the next item from the given asynchronous iterator, or default if given and the
iterator is exhausted.

This is the async variant of the next() builtin, and behaves similarly.

This calls the __anext__() method of async_iterator, returning an awaitable. Awaiting this returns
the next value of the iterator. If default is given, it is returned if the iterator is exhausted, otherwise
StopAsyncIteration is raised.

New in version 3.10.

any(iterable)
Return True if any element of the iterable is true. If the iterable is empty, return False. Equivalent to:

ascii(object)
As repr(), return a string containing a printable representation of an object, but escape the non-
ASCII characters in the string returned by repr() using \x, \u, or \U escapes. This generates a
string similar to that returned by repr() in Python 2.

bin(x)
Convert an integer number to a binary string prefixed with “0b”. The result is a valid Python
expression. If x is not a Python int object, it has to define an __index__() method that returns an
integer. Some examples:

If the prefix “0b” is desired or not, you can use either of the following ways.

See also format() for more information.

class bool(x=False)
Return a Boolean value, i.e. one of True or False. x is converted using the standard truth testing
procedure. If x is false or omitted, this returns False; otherwise, it returns True. The bool class is a
subclass of int (see Numeric Types — int, float, complex). It cannot be subclassed further. Its only
instances are False and True (see Boolean Values).

Changed in version 3.7: x is now a positional-only parameter.

breakpoint(*args, **kws)
This function drops you into the debugger at the call site. Specifically, it calls
sys.breakpointhook(), passing args and kws straight through. By default, sys.breakpointhook()
calls pdb.set_trace() expecting no arguments. In this case, it is purely a convenience function so
you don’t have to explicitly import pdb or type as much code to enter the debugger. However,
sys.breakpointhook() can be set to some other function and breakpoint() will automatically call
that, allowing you to drop into the debugger of choice. If sys.breakpointhook() is not accessible,
this function will raise RuntimeError.

Raises an auditing event builtins.breakpoint with argument breakpointhook.

New in version 3.7.

class bytearray(source=b'')
class bytearray(source, encoding)
class bytearray(source, encoding, errors)

Return a new array of bytes. The bytearray class is a mutable sequence of integers in the range 0
<= x < 256. It has most of the usual methods of mutable sequences, described in Mutable Sequence
Types, as well as most methods that the bytes type has, see Bytes and Bytearray Operations.

The optional source parameter can be used to initialize the array in a few different ways:

If it is a string, you must also give the encoding (and optionally, errors) parameters;
bytearray() then converts the string to bytes using str.encode().
If it is an integer, the array will have that size and will be initialized with null bytes.
If it is an object conforming to the buffer interface, a read-only buffer of the object will be used to
initialize the bytes array.
If it is an iterable, it must be an iterable of integers in the range 0 <= x < 256, which are used
as the initial contents of the array.

Without an argument, an array of size 0 is created.

See also Binary Sequence Types — bytes, bytearray, memoryview and Bytearray Objects.

class bytes(source=b'')
class bytes(source, encoding)
class bytes(source, encoding, errors)

Return a new “bytes” object which is an immutable sequence of integers in the range 0 <= x < 256.
bytes is an immutable version of bytearray – it has the same non-mutating methods and the same
indexing and slicing behavior.

Accordingly, constructor arguments are interpreted as for bytearray().

Bytes objects can also be created with literals, see String and Bytes literals.

See also Binary Sequence Types — bytes, bytearray, memoryview, Bytes Objects, and Bytes and
Bytearray Operations.

callable(object)
Return True if the object argument appears callable, False if not. If this returns True, it is still
possible that a call fails, but if it is False, calling object will never succeed. Note that classes are
callable (calling a class returns a new instance); instances are callable if their class has a
__call__() method.

New in version 3.2: This function was first removed in Python 3.0 and then brought back in Python
3.2.

chr(i)
Return the string representing a character whose Unicode code point is the integer i. For example,
chr(97) returns the string 'a', while chr(8364) returns the string '€'. This is the inverse of ord().

The valid range for the argument is from 0 through 1,114,111 (0x10FFFF in base 16). ValueError
will be raised if i is outside that range.

@classmethod
Transform a method into a class method.

A class method receives the class as an implicit first argument, just like an instance method receives
the instance. To declare a class method, use this idiom:

The @classmethod form is a function decorator – see Function definitions for details.

A class method can be called either on the class (such as C.f()) or on an instance (such as
C().f()). The instance is ignored except for its class. If a class method is called for a derived class,
the derived class object is passed as the implied first argument.

Class methods are different than C++ or Java static methods. If you want those, see
staticmethod() in this section. For more information on class methods, see The standard type
hierarchy.

Changed in version 3.9: Class methods can now wrap other descriptors such as property().

Changed in version 3.10: Class methods now inherit the method attributes (__module__, __name__,
__qualname__, __doc__ and __annotations__) and have a new __wrapped__ attribute.

Changed in version 3.11: Class methods can no longer wrap other descriptors such as property().

compile(source, filename, mode, flags=0, dont_inherit=False, optimize=- 1)
Compile the source into a code or AST object. Code objects can be executed by exec() or eval().
source can either be a normal string, a byte string, or an AST object. Refer to the ast module
documentation for information on how to work with AST objects.

The filename argument should give the file from which the code was read; pass some recognizable
value if it wasn’t read from a file ('<string>' is commonly used).

The mode argument specifies what kind of code must be compiled; it can be 'exec' if source
consists of a sequence of statements, 'eval' if it consists of a single expression, or 'single' if it
consists of a single interactive statement (in the latter case, expression statements that evaluate to
something other than None will be printed).

The optional arguments flags and dont_inherit control which compiler options should be activated
and which future features should be allowed. If neither is present (or both are zero) the code is
compiled with the same flags that affect the code that is calling compile(). If the flags argument is
given and dont_inherit is not (or is zero) then the compiler options and the future statements
specified by the flags argument are used in addition to those that would be used anyway. If
dont_inherit is a non-zero integer then the flags argument is it – the flags (future features and
compiler options) in the surrounding code are ignored.

Compiler options and future statements are specified by bits which can be bitwise ORed together to
specify multiple options. The bitfield required to specify a given future feature can be found as the
compiler_flag attribute on the _Feature instance in the __future__ module. Compiler flags can
be found in ast module, with PyCF_ prefix.

The argument optimize specifies the optimization level of the compiler; the default value of -1 selects
the optimization level of the interpreter as given by -O options. Explicit levels are 0 (no optimization;
__debug__ is true), 1 (asserts are removed, __debug__ is false) or 2 (docstrings are removed too).

This function raises SyntaxError if the compiled source is invalid, and ValueError if the source
contains null bytes.

If you want to parse Python code into its AST representation, see ast.parse().

Raises an auditing event compile with arguments source and filename. This event may also be
raised by implicit compilation.

Note: When compiling a string with multi-line code in 'single' or 'eval' mode, input must be
terminated by at least one newline character. This is to facilitate detection of incomplete and
complete statements in the code module.

Warning: It is possible to crash the Python interpreter with a sufficiently large/complex string
when compiling to an AST object due to stack depth limitations in Python’s AST compiler.

Changed in version 3.2: Allowed use of Windows and Mac newlines. Also, input in 'exec' mode
does not have to end in a newline anymore. Added the optimize parameter.

Changed in version 3.5: Previously, TypeError was raised when null bytes were encountered in
source.

New in version 3.8: ast.PyCF_ALLOW_TOP_LEVEL_AWAIT can now be passed in flags to enable
support for top-level await, async for, and async with.

class complex(real=0, imag=0)
class complex(string)

Return a complex number with the value real + imag*1j or convert a string or number to a complex
number. If the first parameter is a string, it will be interpreted as a complex number and the function
must be called without a second parameter. The second parameter can never be a string. Each
argument may be any numeric type (including complex). If imag is omitted, it defaults to zero and the
constructor serves as a numeric conversion like int and float. If both arguments are omitted,
returns 0j.

For a general Python object x, complex(x) delegates to x.__complex__(). If __complex__() is not
defined then it falls back to __float__(). If __float__() is not defined then it falls back to
__index__().

Note: When converting from a string, the string must not contain whitespace around the central +
or - operator. For example, complex('1+2j') is fine, but complex('1 + 2j') raises ValueError.

The complex type is described in Numeric Types — int, float, complex.

Changed in version 3.6: Grouping digits with underscores as in code literals is allowed.

Changed in version 3.8: Falls back to __index__() if __complex__() and __float__() are not
defined.

delattr(object, name)
This is a relative of setattr(). The arguments are an object and a string. The string must be the
name of one of the object’s attributes. The function deletes the named attribute, provided the object
allows it. For example, delattr(x, 'foobar') is equivalent to del x.foobar. name need not be a
Python identifier (see setattr()).

class dict(**kwarg)
class dict(mapping, **kwarg)
class dict(iterable, **kwarg)

Create a new dictionary. The dict object is the dictionary class. See dict and Mapping Types —
dict for documentation about this class.

For other containers see the built-in list, set, and tuple classes, as well as the collections
module.

dir()
dir(object)

Without arguments, return the list of names in the current local scope. With an argument, attempt to
return a list of valid attributes for that object.

If the object has a method named __dir__(), this method will be called and must return the list of
attributes. This allows objects that implement a custom __getattr__() or __getattribute__()
function to customize the way dir() reports their attributes.

If the object does not provide __dir__(), the function tries its best to gather information from the
object’s __dict__ attribute, if defined, and from its type object. The resulting list is not necessarily
complete and may be inaccurate when the object has a custom __getattr__().

The default dir() mechanism behaves differently with different types of objects, as it attempts to
produce the most relevant, rather than complete, information:

If the object is a module object, the list contains the names of the module’s attributes.
If the object is a type or class object, the list contains the names of its attributes, and recursively
of the attributes of its bases.
Otherwise, the list contains the object’s attributes’ names, the names of its class’s attributes,
and recursively of the attributes of its class’s base classes.

The resulting list is sorted alphabetically. For example:

Note: Because dir() is supplied primarily as a convenience for use at an interactive prompt, it
tries to supply an interesting set of names more than it tries to supply a rigorously or consistently
defined set of names, and its detailed behavior may change across releases. For example,
metaclass attributes are not in the result list when the argument is a class.

divmod(a, b)
Take two (non-complex) numbers as arguments and return a pair of numbers consisting of their
quotient and remainder when using integer division. With mixed operand types, the rules for binary
arithmetic operators apply. For integers, the result is the same as (a // b, a % b). For floating
point numbers the result is (q, a % b), where q is usually math.floor(a / b) but may be 1 less
than that. In any case q * b + a % b is very close to a, if a % b is non-zero it has the same sign as
b, and 0 <= abs(a % b) < abs(b).

enumerate(iterable, start=0)
Return an enumerate object. iterable must be a sequence, an iterator, or some other object which
supports iteration. The __next__() method of the iterator returned by enumerate() returns a tuple
containing a count (from start which defaults to 0) and the values obtained from iterating over
iterable.

Equivalent to:

eval(expression, globals=None, locals=None)
The arguments are a string and optional globals and locals. If provided, globals must be a dictionary.
If provided, locals can be any mapping object.

The expression argument is parsed and evaluated as a Python expression (technically speaking, a
condition list) using the globals and locals dictionaries as global and local namespace. If the globals
dictionary is present and does not contain a value for the key __builtins__, a reference to the
dictionary of the built-in module builtins is inserted under that key before expression is parsed.
That way you can control what builtins are available to the executed code by inserting your own
__builtins__ dictionary into globals before passing it to eval(). If the locals dictionary is omitted it
defaults to the globals dictionary. If both dictionaries are omitted, the expression is executed with the
globals and locals in the environment where eval() is called. Note, eval() does not have access to
the nested scopes (non-locals) in the enclosing environment.

The return value is the result of the evaluated expression. Syntax errors are reported as exceptions.
Example:

This function can also be used to execute arbitrary code objects (such as those created by
compile()). In this case, pass a code object instead of a string. If the code object has been compiled
with 'exec' as the mode argument, eval() 's return value will be None.

Hints: dynamic execution of statements is supported by the exec() function. The globals() and
locals() functions return the current global and local dictionary, respectively, which may be useful to
pass around for use by eval() or exec().

If the given source is a string, then leading and trailing spaces and tabs are stripped.

See ast.literal_eval() for a function that can safely evaluate strings with expressions containing
only literals.

Raises an auditing event exec with the code object as the argument. Code compilation events may
also be raised.

exec(object, globals=None, locals=None, /, *, closure=None)
This function supports dynamic execution of Python code. object must be either a string or a code
object. If it is a string, the string is parsed as a suite of Python statements which is then executed
(unless a syntax error occurs). [1] If it is a code object, it is simply executed. In all cases, the code
that’s executed is expected to be valid as file input (see the section File input in the Reference
Manual). Be aware that the nonlocal, yield, and return statements may not be used outside of
function definitions even within the context of code passed to the exec() function. The return value is
None.

In all cases, if the optional parts are omitted, the code is executed in the current scope. If only globals
is provided, it must be a dictionary (and not a subclass of dictionary), which will be used for both the
global and the local variables. If globals and locals are given, they are used for the global and local
variables, respectively. If provided, locals can be any mapping object. Remember that at the module
level, globals and locals are the same dictionary. If exec gets two separate objects as globals and
locals, the code will be executed as if it were embedded in a class definition.

If the globals dictionary does not contain a value for the key __builtins__, a reference to the
dictionary of the built-in module builtins is inserted under that key. That way you can control what
builtins are available to the executed code by inserting your own __builtins__ dictionary into
globals before passing it to exec().

The closure argument specifies a closure–a tuple of cellvars. It’s only valid when the object is a code
object containing free variables. The length of the tuple must exactly match the number of free
variables referenced by the code object.

Raises an auditing event exec with the code object as the argument. Code compilation events may
also be raised.

Note: The built-in functions globals() and locals() return the current global and local
dictionary, respectively, which may be useful to pass around for use as the second and third
argument to exec().

Note: The default locals act as described for function locals() below: modifications to the
default locals dictionary should not be attempted. Pass an explicit locals dictionary if you need to
see effects of the code on locals after function exec() returns.

Changed in version 3.11: Added the closure parameter.

filter(function, iterable)
Construct an iterator from those elements of iterable for which function returns true. iterable may be
either a sequence, a container which supports iteration, or an iterator. If function is None, the identity
function is assumed, that is, all elements of iterable that are false are removed.

Note that filter(function, iterable) is equivalent to the generator expression (item for item
in iterable if function(item)) if function is not None and (item for item in iterable if
item) if function is None.

See itertools.filterfalse() for the complementary function that returns elements of iterable for
which function returns false.

class float(x=0.0)
Return a floating point number constructed from a number or string x.

If the argument is a string, it should contain a decimal number, optionally preceded by a sign, and
optionally embedded in whitespace. The optional sign may be '+' or '-'; a '+' sign has no effect
on the value produced. The argument may also be a string representing a NaN (not-a-number), or
positive or negative infinity. More precisely, the input must conform to the floatvalue production rule
in the following grammar, after leading and trailing whitespace characters are removed:

sign ::= "+" | "-"
infinity ::= "Infinity" | "inf"
nan ::= "nan"
digitpart ::= digit (["_"] digit)*
number ::= [digitpart] "." digitpart | digitpart ["."]
exponent ::= ("e" | "E") ["+" | "-"] digitpart
floatnumber ::= number [exponent]
floatvalue ::= [sign] (floatnumber | infinity | nan)

Here digit is a Unicode decimal digit (character in the Unicode general category Nd). Case is not
significant, so, for example, “inf”, “Inf”, “INFINITY”, and “iNfINity” are all acceptable spellings for
positive infinity.

Otherwise, if the argument is an integer or a floating point number, a floating point number with the
same value (within Python’s floating point precision) is returned. If the argument is outside the range
of a Python float, an OverflowError will be raised.

For a general Python object x, float(x) delegates to x.__float__(). If __float__() is not defined
then it falls back to __index__().

If no argument is given, 0.0 is returned.

Examples:

The float type is described in Numeric Types — int, float, complex.

Changed in version 3.6: Grouping digits with underscores as in code literals is allowed.

Changed in version 3.7: x is now a positional-only parameter.

Changed in version 3.8: Falls back to __index__() if __float__() is not defined.

format(value, format_spec='')
Convert a value to a “formatted” representation, as controlled by format_spec. The interpretation of
format_spec will depend on the type of the value argument; however, there is a standard formatting
syntax that is used by most built-in types: Format Specification Mini-Language.

The default format_spec is an empty string which usually gives the same effect as calling
str(value).

A call to format(value, format_spec) is translated to type(value).__format__(value,
format_spec) which bypasses the instance dictionary when searching for the value’s __format__()
method. A TypeError exception is raised if the method search reaches object and the format_spec
is non-empty, or if either the format_spec or the return value are not strings.

Changed in version 3.4: object().__format__(format_spec) raises TypeError if format_spec is
not an empty string.

class frozenset(iterable=set())
Return a new frozenset object, optionally with elements taken from iterable. frozenset is a built-in
class. See frozenset and Set Types — set, frozenset for documentation about this class.

For other containers see the built-in set, list, tuple, and dict classes, as well as the
collections module.

getattr(object, name)
getattr(object, name, default)

Return the value of the named attribute of object. name must be a string. If the string is the name of
one of the object’s attributes, the result is the value of that attribute. For example, getattr(x,
'foobar') is equivalent to x.foobar. If the named attribute does not exist, default is returned if
provided, otherwise AttributeError is raised. name need not be a Python identifier (see
setattr()).

Note: Since private name mangling happens at compilation time, one must manually mangle a
private attribute’s (attributes with two leading underscores) name in order to retrieve it with
getattr().

globals()
Return the dictionary implementing the current module namespace. For code within functions, this is
set when the function is defined and remains the same regardless of where the function is called.

hasattr(object, name)
The arguments are an object and a string. The result is True if the string is the name of one of the
object’s attributes, False if not. (This is implemented by calling getattr(object, name) and seeing
whether it raises an AttributeError or not.)

hash(object)
Return the hash value of the object (if it has one). Hash values are integers. They are used to quickly
compare dictionary keys during a dictionary lookup. Numeric values that compare equal have the
same hash value (even if they are of different types, as is the case for 1 and 1.0).

Note: For objects with custom __hash__() methods, note that hash() truncates the return value
based on the bit width of the host machine. See __hash__() for details.

help()
help(request)

Invoke the built-in help system. (This function is intended for interactive use.) If no argument is given,
the interactive help system starts on the interpreter console. If the argument is a string, then the
string is looked up as the name of a module, function, class, method, keyword, or documentation
topic, and a help page is printed on the console. If the argument is any other kind of object, a help
page on the object is generated.

Note that if a slash(/) appears in the parameter list of a function when invoking help(), it means that
the parameters prior to the slash are positional-only. For more info, see the FAQ entry on positional-
only parameters.

This function is added to the built-in namespace by the site module.

Changed in version 3.4: Changes to pydoc and inspect mean that the reported signatures for
callables are now more comprehensive and consistent.

hex(x)
Convert an integer number to a lowercase hexadecimal string prefixed with “0x”. If x is not a Python
int object, it has to define an __index__() method that returns an integer. Some examples:

If you want to convert an integer number to an uppercase or lower hexadecimal string with prefix or
not, you can use either of the following ways:

See also format() for more information.

See also int() for converting a hexadecimal string to an integer using a base of 16.

Note: To obtain a hexadecimal string representation for a float, use the float.hex() method.

id(object)
Return the “identity” of an object. This is an integer which is guaranteed to be unique and constant for
this object during its lifetime. Two objects with non-overlapping lifetimes may have the same id()
value.

CPython implementation detail: This is the address of the object in memory.

Raises an auditing event builtins.id with argument id.

input()
input(prompt)

If the prompt argument is present, it is written to standard output without a trailing newline. The
function then reads a line from input, converts it to a string (stripping a trailing newline), and returns
that. When EOF is read, EOFError is raised. Example:

If the readline module was loaded, then input() will use it to provide elaborate line editing and
history features.

Raises an auditing event builtins.input with argument prompt before reading input

Raises an auditing event builtins.input/result with the result after successfully reading input.

class int(x=0)
class int(x, base=10)

Return an integer object constructed from a number or string x, or return 0 if no arguments are given.
If x defines __int__(), int(x) returns x.__int__(). If x defines __index__(), it returns
x.__index__(). If x defines __trunc__(), it returns x.__trunc__(). For floating point numbers, this
truncates towards zero.

If x is not a number or if base is given, then x must be a string, bytes, or bytearray instance
representing an integer in radix base. Optionally, the string can be preceded by + or - (with no space
in between), have leading zeros, be surrounded by whitespace, and have single underscores
interspersed between digits.

A base-n integer string contains digits, each representing a value from 0 to n-1. The values 0–9 can
be represented by any Unicode decimal digit. The values 10–35 can be represented by a to z (or A
to Z). The default base is 10. The allowed bases are 0 and 2–36. Base-2, -8, and -16 strings can be
optionally prefixed with 0b/0B, 0o/0O, or 0x/0X, as with integer literals in code. For base 0, the string
is interpreted in a similar way to an integer literal in code, in that the actual base is 2, 8, 10, or 16 as
determined by the prefix. Base 0 also disallows leading zeros: int('010', 0) is not legal, while
int('010') and int('010', 8) are.

The integer type is described in Numeric Types — int, float, complex.

Changed in version 3.4: If base is not an instance of int and the base object has a base.__index__
method, that method is called to obtain an integer for the base. Previous versions used
base.__int__ instead of base.__index__.

Changed in version 3.6: Grouping digits with underscores as in code literals is allowed.

Changed in version 3.7: x is now a positional-only parameter.

Changed in version 3.8: Falls back to __index__() if __int__() is not defined.

Changed in version 3.11: The delegation to __trunc__() is deprecated.

Changed in version 3.11: int string inputs and string representations can be limited to help avoid
denial of service attacks. A ValueError is raised when the limit is exceeded while converting a string
x to an int or when converting an int into a string would exceed the limit. See the integer string
conversion length limitation documentation.

isinstance(object, classinfo)
Return True if the object argument is an instance of the classinfo argument, or of a (direct, indirect,
or virtual) subclass thereof. If object is not an object of the given type, the function always returns
False. If classinfo is a tuple of type objects (or recursively, other such tuples) or a Union Type of
multiple types, return True if object is an instance of any of the types. If classinfo is not a type or
tuple of types and such tuples, a TypeError exception is raised. TypeError may not be raised for an
invalid type if an earlier check succeeds.

Changed in version 3.10: classinfo can be a Union Type.

issubclass(class, classinfo)
Return True if class is a subclass (direct, indirect, or virtual) of classinfo. A class is considered a
subclass of itself. classinfo may be a tuple of class objects (or recursively, other such tuples) or a
Union Type, in which case return True if class is a subclass of any entry in classinfo. In any other
case, a TypeError exception is raised.

Changed in version 3.10: classinfo can be a Union Type.

iter(object)
iter(object, sentinel)

Return an iterator object. The first argument is interpreted very differently depending on the presence
of the second argument. Without a second argument, object must be a collection object which
supports the iterable protocol (the __iter__() method), or it must support the sequence protocol
(the __getitem__() method with integer arguments starting at 0). If it does not support either of
those protocols, TypeError is raised. If the second argument, sentinel, is given, then object must be
a callable object. The iterator created in this case will call object with no arguments for each call to its
__next__() method; if the value returned is equal to sentinel, StopIteration will be raised,
otherwise the value will be returned.

See also Iterator Types.

One useful application of the second form of iter() is to build a block-reader. For example, reading
fixed-width blocks from a binary database file until the end of file is reached:

len(s)
Return the length (the number of items) of an object. The argument may be a sequence (such as a
string, bytes, tuple, list, or range) or a collection (such as a dictionary, set, or frozen set).

CPython implementation detail: len raises OverflowError on lengths larger than sys.maxsize,
such as range(2 ** 100).

class list
class list(iterable)

Rather than being a function, list is actually a mutable sequence type, as documented in Lists and
Sequence Types — list, tuple, range.

locals()
Update and return a dictionary representing the current local symbol table. Free variables are
returned by locals() when it is called in function blocks, but not in class blocks. Note that at the
module level, locals() and globals() are the same dictionary.

Note: The contents of this dictionary should not be modified; changes may not affect the values
of local and free variables used by the interpreter.

map(function, iterable, *iterables)
Return an iterator that applies function to every item of iterable, yielding the results. If additional
iterables arguments are passed, function must take that many arguments and is applied to the items
from all iterables in parallel. With multiple iterables, the iterator stops when the shortest iterable is
exhausted. For cases where the function inputs are already arranged into argument tuples, see
itertools.starmap().

max(iterable, *, key=None)
max(iterable, *, default, key=None)
max(arg1, arg2, *args, key=None)

Return the largest item in an iterable or the largest of two or more arguments.

If one positional argument is provided, it should be an iterable. The largest item in the iterable is
returned. If two or more positional arguments are provided, the largest of the positional arguments is
returned.

There are two optional keyword-only arguments. The key argument specifies a one-argument
ordering function like that used for list.sort(). The default argument specifies an object to return if
the provided iterable is empty. If the iterable is empty and default is not provided, a ValueError is
raised.

If multiple items are maximal, the function returns the first one encountered. This is consistent with
other sort-stability preserving tools such as sorted(iterable, key=keyfunc, reverse=True)[0]
and heapq.nlargest(1, iterable, key=keyfunc).

New in version 3.4: The default keyword-only argument.

Changed in version 3.8: The key can be None.

class memoryview(object)
Return a “memory view” object created from the given argument. See Memory Views for more
information.

min(iterable, *, key=None)
min(iterable, *, default, key=None)
min(arg1, arg2, *args, key=None)

Return the smallest item in an iterable or the smallest of two or more arguments.

If one positional argument is provided, it should be an iterable. The smallest item in the iterable is
returned. If two or more positional arguments are provided, the smallest of the positional arguments
is returned.

There are two optional keyword-only arguments. The key argument specifies a one-argument
ordering function like that used for list.sort(). The default argument specifies an object to return if
the provided iterable is empty. If the iterable is empty and default is not provided, a ValueError is
raised.

If multiple items are minimal, the function returns the first one encountered. This is consistent with
other sort-stability preserving tools such as sorted(iterable, key=keyfunc)[0] and
heapq.nsmallest(1, iterable, key=keyfunc).

New in version 3.4: The default keyword-only argument.

Changed in version 3.8: The key can be None.

next(iterator)
next(iterator, default)

Retrieve the next item from the iterator by calling its __next__() method. If default is given, it is
returned if the iterator is exhausted, otherwise StopIteration is raised.

class object
Return a new featureless object. object is a base for all classes. It has methods that are common to
all instances of Python classes. This function does not accept any arguments.

Note: object does not have a __dict__, so you can’t assign arbitrary attributes to an instance of
the object class.

oct(x)
Convert an integer number to an octal string prefixed with “0o”. The result is a valid Python
expression. If x is not a Python int object, it has to define an __index__() method that returns an
integer. For example:

If you want to convert an integer number to an octal string either with the prefix “0o” or not, you can
use either of the following ways.

See also format() for more information.

open(file, mode='r', buffering=- 1, encoding=None, errors=None, newline=None,
closefd=True, opener=None)

Open file and return a corresponding file object. If the file cannot be opened, an OSError is raised.
See Reading and Writing Files for more examples of how to use this function.

file is a path-like object giving the pathname (absolute or relative to the current working directory) of
the file to be opened or an integer file descriptor of the file to be wrapped. (If a file descriptor is given,
it is closed when the returned I/O object is closed unless closefd is set to False.)

mode is an optional string that specifies the mode in which the file is opened. It defaults to 'r' which
means open for reading in text mode. Other common values are 'w' for writing (truncating the file if it
already exists), 'x' for exclusive creation, and 'a' for appending (which on some Unix systems,
means that all writes append to the end of the file regardless of the current seek position). In text
mode, if encoding is not specified the encoding used is platform-dependent: locale.getencoding()
is called to get the current locale encoding. (For reading and writing raw bytes use binary mode and
leave encoding unspecified.) The available modes are:

Character Meaning

'r' open for reading (default)

'w' open for writing, truncating the file first

'x' open for exclusive creation, failing if the file already exists

'a' open for writing, appending to the end of file if it exists

'b' binary mode

't' text mode (default)

'+' open for updating (reading and writing)

The default mode is 'r' (open for reading text, a synonym of 'rt'). Modes 'w+' and 'w+b' open
and truncate the file. Modes 'r+' and 'r+b' open the file with no truncation.

As mentioned in the Overview, Python distinguishes between binary and text I/O. Files opened in
binary mode (including 'b' in the mode argument) return contents as bytes objects without any
decoding. In text mode (the default, or when 't' is included in the mode argument), the contents of
the file are returned as str, the bytes having been first decoded using a platform-dependent
encoding or using the specified encoding if given.

Note: Python doesn’t depend on the underlying operating system’s notion of text files; all the
processing is done by Python itself, and is therefore platform-independent.

buffering is an optional integer used to set the buffering policy. Pass 0 to switch buffering off (only
allowed in binary mode), 1 to select line buffering (only usable in text mode), and an integer > 1 to
indicate the size in bytes of a fixed-size chunk buffer. Note that specifying a buffer size this way
applies for binary buffered I/O, but TextIOWrapper (i.e., files opened with mode='r+') would have
another buffering. To disable buffering in TextIOWrapper, consider using the write_through flag for
io.TextIOWrapper.reconfigure(). When no buffering argument is given, the default buffering
policy works as follows:

Binary files are buffered in fixed-size chunks; the size of the buffer is chosen using a heuristic
trying to determine the underlying device’s “block size” and falling back on
io.DEFAULT_BUFFER_SIZE. On many systems, the buffer will typically be 4096 or 8192 bytes
long.
“Interactive” text files (files for which isatty() returns True) use line buffering. Other text files
use the policy described above for binary files.

encoding is the name of the encoding used to decode or encode the file. This should only be used in
text mode. The default encoding is platform dependent (whatever locale.getencoding() returns),
but any text encoding supported by Python can be used. See the codecs module for the list of
supported encodings.

errors is an optional string that specifies how encoding and decoding errors are to be handled—this
cannot be used in binary mode. A variety of standard error handlers are available (listed under Error
Handlers), though any error handling name that has been registered with codecs.register_error()
is also valid. The standard names include:

'strict' to raise a ValueError exception if there is an encoding error. The default value of
None has the same effect.
'ignore' ignores errors. Note that ignoring encoding errors can lead to data loss.
'replace' causes a replacement marker (such as '?') to be inserted where there is
malformed data.
'surrogateescape' will represent any incorrect bytes as low surrogate code units ranging from
U+DC80 to U+DCFF. These surrogate code units will then be turned back into the same bytes
when the surrogateescape error handler is used when writing data. This is useful for
processing files in an unknown encoding.
'xmlcharrefreplace' is only supported when writing to a file. Characters not supported by the
encoding are replaced with the appropriate XML character reference &#nnn;.
'backslashreplace' replaces malformed data by Python’s backslashed escape sequences.
'namereplace' (also only supported when writing) replaces unsupported characters with
\N{...} escape sequences.

newline determines how to parse newline characters from the stream. It can be None, '', '\n',
'\r', and '\r\n'. It works as follows:

When reading input from the stream, if newline is None, universal newlines mode is enabled.
Lines in the input can end in '\n', '\r', or '\r\n', and these are translated into '\n' before
being returned to the caller. If it is '', universal newlines mode is enabled, but line endings are
returned to the caller untranslated. If it has any of the other legal values, input lines are only
terminated by the given string, and the line ending is returned to the caller untranslated.
When writing output to the stream, if newline is None, any '\n' characters written are
translated to the system default line separator, os.linesep. If newline is '' or '\n', no
translation takes place. If newline is any of the other legal values, any '\n' characters written
are translated to the given string.

If closefd is False and a file descriptor rather than a filename was given, the underlying file
descriptor will be kept open when the file is closed. If a filename is given closefd must be True (the
default); otherwise, an error will be raised.

A custom opener can be used by passing a callable as opener. The underlying file descriptor for the
file object is then obtained by calling opener with (file, flags). opener must return an open file
descriptor (passing os.open as opener results in functionality similar to passing None).

The newly created file is non-inheritable.

The following example uses the dir_fd parameter of the os.open() function to open a file relative to a
given directory:

The type of file object returned by the open() function depends on the mode. When open() is used
to open a file in a text mode ('w', 'r', 'wt', 'rt', etc.), it returns a subclass of io.TextIOBase
(specifically io.TextIOWrapper). When used to open a file in a binary mode with buffering, the
returned class is a subclass of io.BufferedIOBase. The exact class varies: in read binary mode, it
returns an io.BufferedReader; in write binary and append binary modes, it returns an
io.BufferedWriter, and in read/write mode, it returns an io.BufferedRandom. When buffering is
disabled, the raw stream, a subclass of io.RawIOBase, io.FileIO, is returned.

See also the file handling modules, such as fileinput, io (where open() is declared), os,
os.path, tempfile, and shutil.

Raises an auditing event open with arguments file, mode, flags.

The mode and flags arguments may have been modified or inferred from the original call.

Changed in version 3.3:

The opener parameter was added.
The 'x' mode was added.
IOError used to be raised, it is now an alias of OSError.
FileExistsError is now raised if the file opened in exclusive creation mode ('x') already
exists.

Changed in version 3.4:

The file is now non-inheritable.

Changed in version 3.5:

If the system call is interrupted and the signal handler does not raise an exception, the function
now retries the system call instead of raising an InterruptedError exception (see PEP 475 for
the rationale).
The 'namereplace' error handler was added.

Changed in version 3.6:

Support added to accept objects implementing os.PathLike.
On Windows, opening a console buffer may return a subclass of io.RawIOBase other than
io.FileIO.

Changed in version 3.11: The 'U' mode has been removed.

ord(c)
Given a string representing one Unicode character, return an integer representing the Unicode code
point of that character. For example, ord('a') returns the integer 97 and ord('€') (Euro sign)
returns 8364. This is the inverse of chr().

pow(base, exp, mod=None)
Return base to the power exp; if mod is present, return base to the power exp, modulo mod
(computed more efficiently than pow(base, exp) % mod). The two-argument form pow(base, exp)
is equivalent to using the power operator: base**exp.

The arguments must have numeric types. With mixed operand types, the coercion rules for binary
arithmetic operators apply. For int operands, the result has the same type as the operands (after
coercion) unless the second argument is negative; in that case, all arguments are converted to float
and a float result is delivered. For example, pow(10, 2) returns 100, but pow(10, -2) returns 0.01.
For a negative base of type int or float and a non-integral exponent, a complex result is delivered.
For example, pow(-9, 0.5) returns a value close to 3j.

For int operands base and exp, if mod is present, mod must also be of integer type and mod must
be nonzero. If mod is present and exp is negative, base must be relatively prime to mod. In that case,
pow(inv_base, -exp, mod) is returned, where inv_base is an inverse to base modulo mod.

Here’s an example of computing an inverse for 38 modulo 97:

Changed in version 3.8: For int operands, the three-argument form of pow now allows the second
argument to be negative, permitting computation of modular inverses.

Changed in version 3.8: Allow keyword arguments. Formerly, only positional arguments were
supported.

print(*objects, sep=' ', end='\n', file=None, flush=False)
Print objects to the text stream file, separated by sep and followed by end. sep, end, file, and flush, if
present, must be given as keyword arguments.

All non-keyword arguments are converted to strings like str() does and written to the stream,
separated by sep and followed by end. Both sep and end must be strings; they can also be None,
which means to use the default values. If no objects are given, print() will just write end.

The file argument must be an object with a write(string) method; if it is not present or None,
sys.stdout will be used. Since printed arguments are converted to text strings, print() cannot be
used with binary mode file objects. For these, use file.write(...) instead.

Whether the output is buffered is usually determined by file, but if the flush keyword argument is true,
the stream is forcibly flushed.

Changed in version 3.3: Added the flush keyword argument.

class property(fget=None, fset=None, fdel=None, doc=None)
Return a property attribute.

fget is a function for getting an attribute value. fset is a function for setting an attribute value. fdel is a
function for deleting an attribute value. And doc creates a docstring for the attribute.

A typical use is to define a managed attribute x:

If c is an instance of C, c.x will invoke the getter, c.x = value will invoke the setter, and del c.x
the deleter.

If given, doc will be the docstring of the property attribute. Otherwise, the property will copy fget’s
docstring (if it exists). This makes it possible to create read-only properties easily using property()
as a decorator:

The @property decorator turns the voltage() method into a “getter” for a read-only attribute with
the same name, and it sets the docstring for voltage to “Get the current voltage.”

A property object has getter, setter, and deleter methods usable as decorators that create a
copy of the property with the corresponding accessor function set to the decorated function. This is
best explained with an example:

This code is exactly equivalent to the first example. Be sure to give the additional functions the same
name as the original property (x in this case.)

The returned property object also has the attributes fget, fset, and fdel corresponding to the
constructor arguments.

Changed in version 3.5: The docstrings of property objects are now writeable.

class range(stop)
class range(start, stop, step=1)

Rather than being a function, range is actually an immutable sequence type, as documented in
Ranges and Sequence Types — list, tuple, range.

repr(object)
Return a string containing a printable representation of an object. For many types, this function
makes an attempt to return a string that would yield an object with the same value when passed to
eval(); otherwise, the representation is a string enclosed in angle brackets that contains the name
of the type of the object together with additional information often including the name and address of
the object. A class can control what this function returns for its instances by defining a __repr__()
method. If sys.displayhook() is not accessible, this function will raise RuntimeError.

reversed(seq)
Return a reverse iterator. seq must be an object which has a __reversed__() method or supports
the sequence protocol (the __len__() method and the __getitem__() method with integer
arguments starting at 0).

round(number, ndigits=None)
Return number rounded to ndigits precision after the decimal point. If ndigits is omitted or is None, it
returns the nearest integer to its input.

For the built-in types supporting round(), values are rounded to the closest multiple of 10 to the
power minus ndigits; if two multiples are equally close, rounding is done toward the even choice (so,
for example, both round(0.5) and round(-0.5) are 0, and round(1.5) is 2). Any integer value is
valid for ndigits (positive, zero, or negative). The return value is an integer if ndigits is omitted or
None. Otherwise, the return value has the same type as number.

For a general Python object number, round delegates to number.__round__.

Note: The behavior of round() for floats can be surprising: for example, round(2.675, 2) gives
2.67 instead of the expected 2.68. This is not a bug: it’s a result of the fact that most decimal
fractions can’t be represented exactly as a float. See Floating Point Arithmetic: Issues and
Limitations for more information.

class set
class set(iterable)

Return a new set object, optionally with elements taken from iterable. set is a built-in class. See set
and Set Types — set, frozenset for documentation about this class.

For other containers see the built-in frozenset, list, tuple, and dict classes, as well as the
collections module.

setattr(object, name, value)
This is the counterpart of getattr(). The arguments are an object, a string, and an arbitrary value.
The string may name an existing attribute or a new attribute. The function assigns the value to the
attribute, provided the object allows it. For example, setattr(x, 'foobar', 123) is equivalent to
x.foobar = 123.

name need not be a Python identifier as defined in Identifiers and keywords unless the object
chooses to enforce that, for example in a custom __getattribute__() or via __slots__. An
attribute whose name is not an identifier will not be accessible using the dot notation, but is
accessible through getattr() etc..

Note: Since private name mangling happens at compilation time, one must manually mangle a
private attribute’s (attributes with two leading underscores) name in order to set it with setattr().

class slice(stop)
class slice(start, stop, step=1)

Return a slice object representing the set of indices specified by range(start, stop, step). The
start and step arguments default to None. Slice objects have read-only data attributes start, stop,
and step which merely return the argument values (or their default). They have no other explicit
functionality; however, they are used by NumPy and other third-party packages. Slice objects are
also generated when extended indexing syntax is used. For example: a[start:stop:step] or
a[start:stop, i]. See itertools.islice() for an alternate version that returns an iterator.

sorted(iterable, /, *, key=None, reverse=False)
Return a new sorted list from the items in iterable.

Has two optional arguments which must be specified as keyword arguments.

key specifies a function of one argument that is used to extract a comparison key from each element
in iterable (for example, key=str.lower). The default value is None (compare the elements directly).

reverse is a boolean value. If set to True, then the list elements are sorted as if each comparison
were reversed.

Use functools.cmp_to_key() to convert an old-style cmp function to a key function.

The built-in sorted() function is guaranteed to be stable. A sort is stable if it guarantees not to
change the relative order of elements that compare equal — this is helpful for sorting in multiple
passes (for example, sort by department, then by salary grade).

The sort algorithm uses only < comparisons between items. While defining an __lt__() method will
suffice for sorting, PEP 8 recommends that all six rich comparisons be implemented. This will help
avoid bugs when using the same data with other ordering tools such as max() that rely on a different
underlying method. Implementing all six comparisons also helps avoid confusion for mixed type
comparisons which can call reflected the __gt__() method.

For sorting examples and a brief sorting tutorial, see Sorting HOW TO.

@staticmethod
Transform a method into a static method.

A static method does not receive an implicit first argument. To declare a static method, use this idiom:

The @staticmethod form is a function decorator – see Function definitions for details.

A static method can be called either on the class (such as C.f()) or on an instance (such as
C().f()). Moreover, they can be called as regular functions (such as f()).

Static methods in Python are similar to those found in Java or C++. Also, see classmethod() for a
variant that is useful for creating alternate class constructors.

Like all decorators, it is also possible to call staticmethod as a regular function and do something
with its result. This is needed in some cases where you need a reference to a function from a class
body and you want to avoid the automatic transformation to instance method. For these cases, use
this idiom:

For more information on static methods, see The standard type hierarchy.

Changed in version 3.10: Static methods now inherit the method attributes (__module__, __name__,
__qualname__, __doc__ and __annotations__), have a new __wrapped__ attribute, and are now
callable as regular functions.

class str(object='')
class str(object=b'', encoding='utf-8', errors='strict')

Return a str version of object. See str() for details.

str is the built-in string class. For general information about strings, see Text Sequence Type — str.

sum(iterable, /, start=0)
Sums start and the items of an iterable from left to right and returns the total. The iterable’s items are
normally numbers, and the start value is not allowed to be a string.

For some use cases, there are good alternatives to sum(). The preferred, fast way to concatenate a
sequence of strings is by calling ''.join(sequence). To add floating point values with extended
precision, see math.fsum(). To concatenate a series of iterables, consider using
itertools.chain().

Changed in version 3.8: The start parameter can be specified as a keyword argument.

class super
class super(type, object_or_type=None)

Return a proxy object that delegates method calls to a parent or sibling class of type. This is useful
for accessing inherited methods that have been overridden in a class.

The object_or_type determines the method resolution order to be searched. The search starts from
the class right after the type.

For example, if __mro__ of object_or_type is D -> B -> C -> A -> object and the value of type is
B, then super() searches C -> A -> object.

The __mro__ attribute of the object_or_type lists the method resolution search order used by both
getattr() and super(). The attribute is dynamic and can change whenever the inheritance
hierarchy is updated.

If the second argument is omitted, the super object returned is unbound. If the second argument is an
object, isinstance(obj, type) must be true. If the second argument is a type, issubclass(type2,
type) must be true (this is useful for classmethods).

There are two typical use cases for super. In a class hierarchy with single inheritance, super can be
used to refer to parent classes without naming them explicitly, thus making the code more
maintainable. This use closely parallels the use of super in other programming languages.

The second use case is to support cooperative multiple inheritance in a dynamic execution
environment. This use case is unique to Python and is not found in statically compiled languages or
languages that only support single inheritance. This makes it possible to implement “diamond
diagrams” where multiple base classes implement the same method. Good design dictates that such
implementations have the same calling signature in every case (because the order of calls is
determined at runtime, because that order adapts to changes in the class hierarchy, and because
that order can include sibling classes that are unknown prior to runtime).

For both use cases, a typical superclass call looks like this:

In addition to method lookups, super() also works for attribute lookups. One possible use case for
this is calling descriptors in a parent or sibling class.

Note that super() is implemented as part of the binding process for explicit dotted attribute lookups
such as super().__getitem__(name). It does so by implementing its own __getattribute__()
method for searching classes in a predictable order that supports cooperative multiple inheritance.
Accordingly, super() is undefined for implicit lookups using statements or operators such as
super()[name].

Also note that, aside from the zero argument form, super() is not limited to use inside methods. The
two argument form specifies the arguments exactly and makes the appropriate references. The zero
argument form only works inside a class definition, as the compiler fills in the necessary details to
correctly retrieve the class being defined, as well as accessing the current instance for ordinary
methods.

For practical suggestions on how to design cooperative classes using super(), see guide to using
super().

class tuple
class tuple(iterable)

Rather than being a function, tuple is actually an immutable sequence type, as documented in
Tuples and Sequence Types — list, tuple, range.

class type(object)
class type(name, bases, dict, **kwds)

With one argument, return the type of an object. The return value is a type object and generally the
same object as returned by object.__class__.

The isinstance() built-in function is recommended for testing the type of an object, because it
takes subclasses into account.

With three arguments, return a new type object. This is essentially a dynamic form of the class
statement. The name string is the class name and becomes the __name__ attribute. The bases tuple
contains the base classes and becomes the __bases__ attribute; if empty, object, the ultimate base
of all classes, is added. The dict dictionary contains attribute and method definitions for the class
body; it may be copied or wrapped before becoming the __dict__ attribute. The following two
statements create identical type objects:

See also Type Objects.

Keyword arguments provided to the three argument form are passed to the appropriate metaclass
machinery (usually __init_subclass__()) in the same way that keywords in a class definition
(besides metaclass) would.

See also Customizing class creation.

Changed in version 3.6: Subclasses of type which don’t override type.__new__ may no longer use
the one-argument form to get the type of an object.

vars()
vars(object)

Return the __dict__ attribute for a module, class, instance, or any other object with a __dict__
attribute.

Objects such as modules and instances have an updateable __dict__ attribute; however, other
objects may have write restrictions on their __dict__ attributes (for example, classes use a
types.MappingProxyType to prevent direct dictionary updates).

Without an argument, vars() acts like locals(). Note, the locals dictionary is only useful for reads
since updates to the locals dictionary are ignored.

A TypeError exception is raised if an object is specified but it doesn’t have a __dict__ attribute (for
example, if its class defines the __slots__ attribute).

zip(*iterables, strict=False)
Iterate over several iterables in parallel, producing tuples with an item from each one.

Example:

More formally: zip() returns an iterator of tuples, where the i-th tuple contains the i-th element from
each of the argument iterables.

Another way to think of zip() is that it turns rows into columns, and columns into rows. This is similar
to transposing a matrix.

zip() is lazy: The elements won’t be processed until the iterable is iterated on, e.g. by a for loop or
by wrapping in a list.

One thing to consider is that the iterables passed to zip() could have different lengths; sometimes
by design, and sometimes because of a bug in the code that prepared these iterables. Python offers
three different approaches to dealing with this issue:

By default, zip() stops when the shortest iterable is exhausted. It will ignore the remaining
items in the longer iterables, cutting off the result to the length of the shortest iterable:

zip() is often used in cases where the iterables are assumed to be of equal length. In such
cases, it’s recommended to use the strict=True option. Its output is the same as regular
zip():

Unlike the default behavior, it raises a ValueError if one iterable is exhausted before the
others:

Without the strict=True argument, any bug that results in iterables of different lengths will be
silenced, possibly manifesting as a hard-to-find bug in another part of the program.

Shorter iterables can be padded with a constant value to make all the iterables have the same
length. This is done by itertools.zip_longest().

Edge cases: With a single iterable argument, zip() returns an iterator of 1-tuples. With no
arguments, it returns an empty iterator.

Tips and tricks:

The left-to-right evaluation order of the iterables is guaranteed. This makes possible an idiom
for clustering a data series into n-length groups using zip(*[iter(s)]*n, strict=True). This
repeats the same iterator n times so that each output tuple has the result of n calls to the
iterator. This has the effect of dividing the input into n-length chunks.

zip() in conjunction with the * operator can be used to unzip a list:

Changed in version 3.10: Added the strict argument.

__import__(name, globals=None, locals=None, fromlist=(), level=0)

Note: This is an advanced function that is not needed in everyday Python programming, unlike
importlib.import_module().

This function is invoked by the import statement. It can be replaced (by importing the builtins
module and assigning to builtins.__import__) in order to change semantics of the import
statement, but doing so is strongly discouraged as it is usually simpler to use import hooks (see PEP
302) to attain the same goals and does not cause issues with code which assumes the default import
implementation is in use. Direct use of __import__() is also discouraged in favor of
importlib.import_module().

The function imports the module name, potentially using the given globals and locals to determine
how to interpret the name in a package context. The fromlist gives the names of objects or
submodules that should be imported from the module given by name. The standard implementation
does not use its locals argument at all and uses its globals only to determine the package context of
the import statement.

level specifies whether to use absolute or relative imports. 0 (the default) means only perform
absolute imports. Positive values for level indicate the number of parent directories to search relative
to the directory of the module calling __import__() (see PEP 328 for the details).

When the name variable is of the form package.module, normally, the top-level package (the name
up till the first dot) is returned, not the module named by name. However, when a non-empty fromlist
argument is given, the module named by name is returned.

For example, the statement import spam results in bytecode resembling the following code:

The statement import spam.ham results in this call:

Note how __import__() returns the toplevel module here because this is the object that is bound to
a name by the import statement.

On the other hand, the statement from spam.ham import eggs, sausage as saus results in

Here, the spam.ham module is returned from __import__(). From this object, the names to import
are retrieved and assigned to their respective names.

If you simply want to import a module (potentially within a package) by name, use
importlib.import_module().

Changed in version 3.3: Negative values for level are no longer supported (which also changes the
default value to 0).

Changed in version 3.9: When the command line options -E or -I are being used, the environment
variable PYTHONCASEOK is now ignored.

Footnotes

Note that the parser only accepts the Unix-style end of line convention. If you are reading the code
from a file, make sure to use newline conversion mode to convert Windows or Mac-style newlines.

 Python » English 3.11.1 3.11.1 Documentation » The Python Standard Library » Built-in Functions

© Copyright 2001-2023, Python Software Foundation.
This page is licensed under the Python Software Foundation License Version 2.

Examples, recipes, and other code in the documentation are additionally licensed under the Zero Clause BSD License.
See History and License for more information.

The Python Software Foundation is a non-profit corporation. Please donate.

Last updated on Jan 31, 2023. Found a bug?
Created using Sphinx 4.5.0.

def all(iterable):
 for element in iterable:
 if not element:
 return False
 return True

def any(iterable):
 for element in iterable:
 if element:
 return True
 return False

>>> bin(3)
'0b11'
>>> bin(-10)
'-0b1010'

>>>

>>> format(14, '#b'), format(14, 'b')
('0b1110', '1110')
>>> f'{14:#b}', f'{14:b}'
('0b1110', '1110')

>>>

class C:
 @classmethod
 def f(cls, arg1, arg2): ...

>>> import struct
>>> dir() # show the names in the module namespace
['__builtins__', '__name__', 'struct']
>>> dir(struct) # show the names in the struct module
['Struct', '__all__', '__builtins__', '__cached__', '__doc__', '__file__',
 '__initializing__', '__loader__', '__name__', '__package__',
 '_clearcache', 'calcsize', 'error', 'pack', 'pack_into',
 'unpack', 'unpack_from']
>>> class Shape:
... def __dir__(self):
... return ['area', 'perimeter', 'location']
>>> s = Shape()
>>> dir(s)
['area', 'location', 'perimeter']

>>>

>>> seasons = ['Spring', 'Summer', 'Fall', 'Winter']
>>> list(enumerate(seasons))
[(0, 'Spring'), (1, 'Summer'), (2, 'Fall'), (3, 'Winter')]
>>> list(enumerate(seasons, start=1))
[(1, 'Spring'), (2, 'Summer'), (3, 'Fall'), (4, 'Winter')]

>>>

def enumerate(iterable, start=0):
 n = start
 for elem in iterable:
 yield n, elem
 n += 1

>>> x = 1
>>> eval('x+1')
2

>>>

>>> float('+1.23')
1.23
>>> float(' -12345\n')
-12345.0
>>> float('1e-003')
0.001
>>> float('+1E6')
1000000.0
>>> float('-Infinity')
-inf

>>>

>>> hex(255)
'0xff'
>>> hex(-42)
'-0x2a'

>>>

>>> '%#x' % 255, '%x' % 255, '%X' % 255
('0xff', 'ff', 'FF')
>>> format(255, '#x'), format(255, 'x'), format(255, 'X')
('0xff', 'ff', 'FF')
>>> f'{255:#x}', f'{255:x}', f'{255:X}'
('0xff', 'ff', 'FF')

>>>

>>> s = input('--> ')
--> Monty Python's Flying Circus
>>> s
"Monty Python's Flying Circus"

>>>

from functools import partial
with open('mydata.db', 'rb') as f:
 for block in iter(partial(f.read, 64), b''):
 process_block(block)

>>> oct(8)
'0o10'
>>> oct(-56)
'-0o70'

>>>

>>> '%#o' % 10, '%o' % 10
('0o12', '12')
>>> format(10, '#o'), format(10, 'o')
('0o12', '12')
>>> f'{10:#o}', f'{10:o}'
('0o12', '12')

>>>

>>> import os
>>> dir_fd = os.open('somedir', os.O_RDONLY)
>>> def opener(path, flags):
... return os.open(path, flags, dir_fd=dir_fd)
...
>>> with open('spamspam.txt', 'w', opener=opener) as f:
... print('This will be written to somedir/spamspam.txt', file=f)
...
>>> os.close(dir_fd) # don't leak a file descriptor

>>>

>>> pow(38, -1, mod=97)
23
>>> 23 * 38 % 97 == 1
True

>>>

class C:
 def __init__(self):
 self._x = None

 def getx(self):
 return self._x

 def setx(self, value):
 self._x = value

 def delx(self):
 del self._x

 x = property(getx, setx, delx, "I'm the 'x' property.")

class Parrot:
 def __init__(self):
 self._voltage = 100000

 @property
 def voltage(self):
 """Get the current voltage."""
 return self._voltage

class C:
 def __init__(self):
 self._x = None

 @property
 def x(self):
 """I'm the 'x' property."""
 return self._x

 @x.setter
 def x(self, value):
 self._x = value

 @x.deleter
 def x(self):
 del self._x

class C:
 @staticmethod
 def f(arg1, arg2, ...): ...

def regular_function():
 ...

class C:
 method = staticmethod(regular_function)

class C(B):
 def method(self, arg):
 super().method(arg) # This does the same thing as:
 # super(C, self).method(arg)

>>> class X:
... a = 1
...
>>> X = type('X', (), dict(a=1))

>>>

>>> for item in zip([1, 2, 3], ['sugar', 'spice', 'everything nice']):
... print(item)
...
(1, 'sugar')
(2, 'spice')
(3, 'everything nice')

>>>

>>> list(zip(range(3), ['fee', 'fi', 'fo', 'fum']))
[(0, 'fee'), (1, 'fi'), (2, 'fo')]

>>>

>>> list(zip(('a', 'b', 'c'), (1, 2, 3), strict=True))
[('a', 1), ('b', 2), ('c', 3)]

>>>

>>> for item in zip(range(3), ['fee', 'fi', 'fo', 'fum'], strict=True):
... print(item)
...
(0, 'fee')
(1, 'fi')
(2, 'fo')
Traceback (most recent call last):
 ...
ValueError: zip() argument 2 is longer than argument 1

>>>

>>> x = [1, 2, 3]
>>> y = [4, 5, 6]
>>> list(zip(x, y))
[(1, 4), (2, 5), (3, 6)]
>>> x2, y2 = zip(*zip(x, y))
>>> x == list(x2) and y == list(y2)
True

>>>

spam = __import__('spam', globals(), locals(), [], 0)

spam = __import__('spam.ham', globals(), locals(), [], 0)

_temp = __import__('spam.ham', globals(), locals(), ['eggs', 'sausage'], 0)
eggs = _temp.eggs
saus = _temp.sausage

Previous topic
Introduction

Next topic
Built-in Constants

This Page
Report a Bug
Show Source

«

https://docs.python.org/3/genindex.html
https://docs.python.org/3/py-modindex.html
https://docs.python.org/3/library/constants.html
https://docs.python.org/3/library/intro.html
https://docs.python.org/3/genindex.html
https://docs.python.org/3/py-modindex.html
https://docs.python.org/3/library/constants.html
https://docs.python.org/3/library/intro.html
https://www.python.org/
https://docs.python.org/3/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/functions.html
https://docs.python.org/3/glossary.html#term-asynchronous-iterator
https://docs.python.org/3/glossary.html#term-asynchronous-iterable
https://docs.python.org/3/glossary.html#term-asynchronous-iterator
https://docs.python.org/3/reference/datamodel.html#object.__anext__
https://docs.python.org/3/glossary.html#term-awaitable
https://docs.python.org/3/library/exceptions.html#StopAsyncIteration
https://docs.python.org/3/library/stdtypes.html#truth
https://docs.python.org/3/library/stdtypes.html#typesnumeric
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/sys.html#sys.breakpointhook
https://docs.python.org/3/library/pdb.html#pdb.set_trace
https://docs.python.org/3/library/pdb.html#module-pdb
https://docs.python.org/3/library/sys.html#sys.breakpointhook
https://docs.python.org/3/library/sys.html#sys.breakpointhook
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/sys.html#auditing
https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/library/stdtypes.html#typesseq-mutable
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes-methods
https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/library/stdtypes.html#str.encode
https://docs.python.org/3/c-api/buffer.html#bufferobjects
https://docs.python.org/3/library/stdtypes.html#binaryseq
https://docs.python.org/3/library/stdtypes.html#typebytearray
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/reference/lexical_analysis.html#strings
https://docs.python.org/3/library/stdtypes.html#binaryseq
https://docs.python.org/3/library/stdtypes.html#typebytes
https://docs.python.org/3/library/stdtypes.html#bytes-methods
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/glossary.html#term-decorator
https://docs.python.org/3/reference/compound_stmts.html#function
https://docs.python.org/3/reference/datamodel.html#types
https://docs.python.org/3/glossary.html#term-descriptor
https://docs.python.org/3/glossary.html#term-descriptor
https://docs.python.org/3/library/ast.html#module-ast
https://docs.python.org/3/library/ast.html#ast-compiler-flags
https://docs.python.org/3/reference/simple_stmts.html#future
https://docs.python.org/3/library/__future__.html#module-__future__
https://docs.python.org/3/library/ast.html#ast-compiler-flags
https://docs.python.org/3/library/ast.html#module-ast
https://docs.python.org/3/using/cmdline.html#cmdoption-O
https://docs.python.org/3/library/exceptions.html#SyntaxError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/ast.html#ast.parse
https://docs.python.org/3/library/sys.html#auditing
https://docs.python.org/3/library/code.html#module-code
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#typesnumeric
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#typesmapping
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/collections.html#module-collections
https://docs.python.org/3/library/stdtypes.html#object.__dict__
https://docs.python.org/3/glossary.html#term-iterator
https://docs.python.org/3/library/stdtypes.html#iterator.__next__
https://docs.python.org/3/library/builtins.html#module-builtins
https://docs.python.org/3/glossary.html#term-nested-scope
https://docs.python.org/3/library/ast.html#ast.literal_eval
https://docs.python.org/3/library/sys.html#auditing
https://docs.python.org/3/reference/toplevel_components.html#file-input
https://docs.python.org/3/reference/simple_stmts.html#nonlocal
https://docs.python.org/3/reference/simple_stmts.html#yield
https://docs.python.org/3/reference/simple_stmts.html#return
https://docs.python.org/3/library/builtins.html#module-builtins
https://docs.python.org/3/library/sys.html#auditing
https://docs.python.org/3/library/itertools.html#itertools.filterfalse
https://docs.python.org/3/library/exceptions.html#OverflowError
https://docs.python.org/3/library/stdtypes.html#typesnumeric
https://docs.python.org/3/library/string.html#formatspec
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#frozenset
https://docs.python.org/3/library/stdtypes.html#frozenset
https://docs.python.org/3/library/stdtypes.html#types-set
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/collections.html#module-collections
https://docs.python.org/3/library/exceptions.html#AttributeError
https://docs.python.org/3/reference/expressions.html#private-name-mangling
https://docs.python.org/3/library/exceptions.html#AttributeError
https://docs.python.org/3/faq/programming.html#faq-positional-only-arguments
https://docs.python.org/3/library/site.html#module-site
https://docs.python.org/3/library/pydoc.html#module-pydoc
https://docs.python.org/3/library/inspect.html#module-inspect
https://docs.python.org/3/library/stdtypes.html#float.hex
https://docs.python.org/3/library/sys.html#auditing
https://docs.python.org/3/library/exceptions.html#EOFError
https://docs.python.org/3/library/readline.html#module-readline
https://docs.python.org/3/library/sys.html#auditing
https://docs.python.org/3/library/sys.html#auditing
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/reference/lexical_analysis.html#integers
https://docs.python.org/3/library/stdtypes.html#typesnumeric
https://docs.python.org/3/reference/datamodel.html#object.__index__
https://docs.python.org/3/reference/datamodel.html#object.__int__
https://docs.python.org/3/reference/datamodel.html#object.__index__
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#int-max-str-digits
https://docs.python.org/3/glossary.html#term-abstract-base-class
https://docs.python.org/3/library/stdtypes.html#types-union
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#types-union
https://docs.python.org/3/glossary.html#term-abstract-base-class
https://docs.python.org/3/library/stdtypes.html#types-union
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#types-union
https://docs.python.org/3/glossary.html#term-iterator
https://docs.python.org/3/glossary.html#term-iterable
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#iterator.__next__
https://docs.python.org/3/library/exceptions.html#StopIteration
https://docs.python.org/3/library/stdtypes.html#typeiter
https://docs.python.org/3/library/exceptions.html#OverflowError
https://docs.python.org/3/library/sys.html#sys.maxsize
https://docs.python.org/3/library/stdtypes.html#range
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#typesseq-list
https://docs.python.org/3/library/stdtypes.html#typesseq
https://docs.python.org/3/library/itertools.html#itertools.starmap
https://docs.python.org/3/glossary.html#term-iterable
https://docs.python.org/3/library/stdtypes.html#list.sort
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#typememoryview
https://docs.python.org/3/glossary.html#term-iterable
https://docs.python.org/3/library/stdtypes.html#list.sort
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/glossary.html#term-iterator
https://docs.python.org/3/library/stdtypes.html#iterator.__next__
https://docs.python.org/3/library/exceptions.html#StopIteration
https://docs.python.org/3/library/stdtypes.html#object.__dict__
https://docs.python.org/3/glossary.html#term-file-object
https://docs.python.org/3/library/exceptions.html#OSError
https://docs.python.org/3/tutorial/inputoutput.html#tut-files
https://docs.python.org/3/glossary.html#term-path-like-object
https://docs.python.org/3/library/locale.html#locale.getencoding
https://docs.python.org/3/library/io.html#io-overview
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/io.html#io.TextIOWrapper.reconfigure
https://docs.python.org/3/library/io.html#io.DEFAULT_BUFFER_SIZE
https://docs.python.org/3/library/io.html#io.IOBase.isatty
https://docs.python.org/3/library/locale.html#locale.getencoding
https://docs.python.org/3/glossary.html#term-text-encoding
https://docs.python.org/3/library/codecs.html#module-codecs
https://docs.python.org/3/library/codecs.html#error-handlers
https://docs.python.org/3/library/codecs.html#codecs.register_error
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/os.html#os.linesep
https://docs.python.org/3/library/os.html#os.open
https://docs.python.org/3/library/os.html#fd-inheritance
https://docs.python.org/3/library/os.html#dir-fd
https://docs.python.org/3/library/os.html#os.open
https://docs.python.org/3/glossary.html#term-file-object
https://docs.python.org/3/library/io.html#io.TextIOBase
https://docs.python.org/3/library/io.html#io.TextIOWrapper
https://docs.python.org/3/library/io.html#io.BufferedIOBase
https://docs.python.org/3/library/io.html#io.BufferedReader
https://docs.python.org/3/library/io.html#io.BufferedWriter
https://docs.python.org/3/library/io.html#io.BufferedRandom
https://docs.python.org/3/library/io.html#io.RawIOBase
https://docs.python.org/3/library/io.html#io.FileIO
https://docs.python.org/3/library/fileinput.html#module-fileinput
https://docs.python.org/3/library/io.html#module-io
https://docs.python.org/3/library/os.html#module-os
https://docs.python.org/3/library/os.path.html#module-os.path
https://docs.python.org/3/library/tempfile.html#module-tempfile
https://docs.python.org/3/library/shutil.html#module-shutil
https://docs.python.org/3/library/sys.html#auditing
https://docs.python.org/3/library/exceptions.html#IOError
https://docs.python.org/3/library/exceptions.html#OSError
https://docs.python.org/3/library/exceptions.html#FileExistsError
https://docs.python.org/3/library/exceptions.html#InterruptedError
https://peps.python.org/pep-0475/
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/io.html#io.RawIOBase
https://docs.python.org/3/library/io.html#io.FileIO
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/sys.html#sys.stdout
https://docs.python.org/3/glossary.html#term-decorator
https://docs.python.org/3/library/stdtypes.html#range
https://docs.python.org/3/library/stdtypes.html#typesseq-range
https://docs.python.org/3/library/stdtypes.html#typesseq
https://docs.python.org/3/library/sys.html#sys.displayhook
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/glossary.html#term-iterator
https://docs.python.org/3/tutorial/floatingpoint.html#tut-fp-issues
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/stdtypes.html#types-set
https://docs.python.org/3/library/stdtypes.html#frozenset
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/collections.html#module-collections
https://docs.python.org/3/reference/lexical_analysis.html#identifiers
https://docs.python.org/3/reference/datamodel.html#object.__getattribute__
https://docs.python.org/3/reference/datamodel.html#object.__slots__
https://docs.python.org/3/reference/expressions.html#private-name-mangling
https://docs.python.org/3/glossary.html#term-slice
https://docs.python.org/3/library/itertools.html#itertools.islice
https://docs.python.org/3/library/functools.html#functools.cmp_to_key
https://docs.python.org/3/reference/datamodel.html#object.__lt__
https://peps.python.org/pep-0008/
https://docs.python.org/3/reference/expressions.html#comparisons
https://docs.python.org/3/reference/datamodel.html#object.__gt__
https://docs.python.org/3/howto/sorting.html#sortinghowto
https://docs.python.org/3/glossary.html#term-decorator
https://docs.python.org/3/reference/compound_stmts.html#function
https://docs.python.org/3/reference/datamodel.html#types
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/glossary.html#term-class
https://docs.python.org/3/library/stdtypes.html#textseq
https://docs.python.org/3/library/math.html#math.fsum
https://docs.python.org/3/library/itertools.html#itertools.chain
https://docs.python.org/3/glossary.html#term-method-resolution-order
https://docs.python.org/3/library/stdtypes.html#class.__mro__
https://docs.python.org/3/library/stdtypes.html#class.__mro__
https://docs.python.org/3/glossary.html#term-descriptor
https://rhettinger.wordpress.com/2011/05/26/super-considered-super/
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#typesseq-tuple
https://docs.python.org/3/library/stdtypes.html#typesseq
https://docs.python.org/3/library/stdtypes.html#instance.__class__
https://docs.python.org/3/reference/compound_stmts.html#class
https://docs.python.org/3/library/stdtypes.html#definition.__name__
https://docs.python.org/3/library/stdtypes.html#class.__bases__
https://docs.python.org/3/library/stdtypes.html#object.__dict__
https://docs.python.org/3/library/stdtypes.html#bltin-type-objects
https://docs.python.org/3/reference/datamodel.html#object.__init_subclass__
https://docs.python.org/3/reference/datamodel.html#class-customization
https://docs.python.org/3/library/stdtypes.html#object.__dict__
https://docs.python.org/3/library/stdtypes.html#object.__dict__
https://docs.python.org/3/library/stdtypes.html#object.__dict__
https://docs.python.org/3/library/stdtypes.html#object.__dict__
https://docs.python.org/3/library/types.html#types.MappingProxyType
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#object.__dict__
https://docs.python.org/3/reference/datamodel.html#object.__slots__
https://en.wikipedia.org/wiki/Transpose
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/itertools.html#itertools.zip_longest
https://docs.python.org/3/library/importlib.html#importlib.import_module
https://docs.python.org/3/reference/simple_stmts.html#import
https://docs.python.org/3/library/builtins.html#module-builtins
https://peps.python.org/pep-0302/
https://docs.python.org/3/library/importlib.html#importlib.import_module
https://docs.python.org/3/reference/simple_stmts.html#import
https://peps.python.org/pep-0328/
https://docs.python.org/3/reference/simple_stmts.html#import
https://docs.python.org/3/library/importlib.html#importlib.import_module
https://docs.python.org/3/using/cmdline.html#cmdoption-E
https://docs.python.org/3/using/cmdline.html#cmdoption-I
https://docs.python.org/3/using/cmdline.html#envvar-PYTHONCASEOK
https://www.python.org/
https://docs.python.org/3/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/functions.html
https://docs.python.org/3/copyright.html
https://docs.python.org/license.html
https://www.python.org/psf/donations/
https://docs.python.org/bugs.html
https://www.sphinx-doc.org/
https://docs.python.org/3/library/intro.html
https://docs.python.org/3/library/constants.html
https://docs.python.org/3/bugs.html
https://github.com/python/cpython/blob/3.11/Doc/library/functions.rst

