
Audit Interim Report
This is an interim Smart Contract Audit Report that is executed for proper communication
between Saif Sghaier and its clients. This is not to be considered a final report.

Project Name - Being
Project Platform - EVM
Project Language - Solidity

Project Contract Link -<Enter Contract link here>

Project CodeBase -
https://docs.google.com/document/u/0/d/1-Yc1LPIH8ATB2gmepbuiXVclQUWctRYJ8PXlCbjG4F
U/mobilebasic?pli=1
Project Commit - <Enter Commit Hash for codebase here>

File Details
<Enter Name of File and Give It A File ID>
<File ID Naming Convention - File ID will contain 3 letters. The first two letters will be initials
from the project name, the third letter will be the initial of the file name. If two or more files
contain same initial, then a fourth letter might be added to distinguish between them>
<File ID Example -

Project name - Lightning Works
File names - LW0-Contract.sol, LW0-Minter.sol, LW0-Simple.sol
File IDs - LWC, LWM, LWS
Issues IDs- LWC01, LWC02, LWC03 etc.>

File ID File Name

BEING Being-being.sol

Audit Details
Report Submission Date - 10/12/2024
Result - Passed



Findings Details

Severity Number Of Issues Percentage

Critical 7 63%

High 1 9%

Medium 0 0%

Low 2 18%

Informational 1 10%

Finding Summary
<Issues Status Details -

Reported - When Issue is first reported.
Acknowledged - If client has seen the issues but not taken any action
Resolved - If client has seen the issue and fixed it>

Issue ID Type Line Severity Status

BEING-01 deploymentTime ≠
DEPLOYMENT_TIMESTAMP

45 Critical Severity Resolved

BEING-02 Wrong Reward Calculation 95-106 Critical Severity Resolved

BEING-03 totalStakedBalance has to be a
global variable

70 / 86 /
121

Critical Severity Resolved

BEING-04 lastStakeTime Uses
block.number instead of
block.timestamp

68 Critical Severity Resolved

BEING-05 Unused local Variable 76 Critical Severity Resolved

BEING-06 Staking and Unstaking Logic 75-93 Critical Severity Resolved

BEING-07 functions with same signature - Critical Severity Resolved

BEING-08 getTotalStaked() does not return
contract balance

78 High Severity Resolved

BEING-09 Centralization Risk - Low Severity Acknowledged

BEING-10 Minimum Stake Amount 17 Low Severity Resolved

BEING-11 floating pragma & Old solidity
version

2 Informational Resolved



Issue ID - BEING-01

Type - deploymentTime ≠ DEPLOYMENT_TIMESTAMP
Severity - Critical Severity
File - being.sol
Line - 45
Status - Resolved

Description - in getCurrentRewardRate(), DEPLOYMENT_TIMESTAMP is used to calculate
timeElapsed but the correct variable name is deploymentTime which is a global variable
initialized in the constructor.

Remediation - changed the global variable name to DEPLOYMENT_TIMESTAMP in the
constructor too. Also make it IMMUTABLE since it does not change after deployment.

SnapShot -



Issue ID - BEING-02

Type - Wrong Reward Calculation
Severity - Critical Severity
File - being.sol
Line - 95-106
Status - Resolved

Description - Rewards are calculated using integer division, which can lead to precision loss,
especially for small amounts. Additionally, the calculation doesn't account for compounding over
multiple staking periods.

Remediation - Consider using a higher precision unit for calculations (e.g., using a multiplier for
decimals). Implement a mechanism to account for compounding if desired.
Here is the right way to calculate rewards in the code snippet below:
SnapShot -



Issue ID - BEING-03

Type - totalStakedBalance has to be a global variable
Severity - Critical Severity
File - being.sol
Line - 70 / 86 / 121
Status - Resolved

Description - totalStackedBalance is used to keep track of the total stacked balance in the
contract but it is not declared at all which makes the contract uncompilable.

Remediation - Declare the totalStakedBalance as a global variable.

SnapShot -



Issue ID - BEING-04

Type - lastStakeTime Uses block.number instead of block.timestamp
Severity - Critical Severity
File - being.sol
Line - 68
Status - Resolved

Description - lastStakeTime uses block.number to keep track of the last time a user staked but it
should be block.timestamp instead. This lead to major issue with the contract logic

Remediation - Use block.timestamp instead of block.number

SnapShot -



Issue ID - BEING-05

Type - Unused local Variable
Severity - Critical Severity
File - being.sol
Line - 76
Status - Resolved

Description - uint256 stakedAmount = stakedBalance[msg.sender]; is used to get the staked
amount of a certain staker in unstakeTokens() but it is not used in the function, also
stakedBalance[msg.sender] is set to zero before transferring the funds to the staker which will
make the staker lose his staked funds.

Remediation - Use stackedAmount in the function after setting the stakedBalance[msg.sender]
to 0.

SnapShot -



Issue ID - BEING-06

Type - Staking and Unstaking Logic
Severity - Critical Severity
File - being.sol
Line - 75-93
Status - Resolved

Description - The contract allows unstaking of all tokens at once without any penalties or lock
periods. This could lead to potential issues with tokenomics, such as users staking just before a
reward period ends and unstaking immediately after.

Remediation - Implement a lock period or penalties for early unstaking to encourage longer-term
staking. This can help stabilize the token economy.

SnapShot -



Issue ID - BEING-07
Type - functions with same signature
Severity - Critical Severity
File - being.sol
Line - -
Status - Resolved

Description - By the end of the contract there are two functions that have the same signature:
function getTotalStaked() external view returns (uint256) {
return totalSupply(); // Replace with the inherited or correct variable/method.

}

function getTotalStaked() external view returns (uint256) {
return totalStakedBalance; // Use the declared variable

}

Making the contract uncompilable

Remediation - remove the one that returns totalSupply(); because total supply is already a
public variable from ERC20.sol

SnapShot -



Issue ID - BEING-08
Type - getTotalStaked() does not return contract balance
Severity - High Severity
File - being.sol
Line - 78
Status - Resolved

Description - getTotalStaked() does not return the contract balance, instead it returns how much
ETH is inside the contract.

Remediation - To get the real balance of the contract change it to this: Return
balanceOf(address(this));

SnapShot -



Issue ID - BEING-09

Type - Centralization risk
Severity - Low Severity
File - being.sol
Line - -
Status - Acknowledged

Description - The Owner of the contract holds all the privileges. It is considered a bad practice
and can lead to loss of funds or losing control of the protocol if the owner address is
compromised.

Remediation - Consider adding more roles (admins) or using a multisignature.

SnapShot -
No snapshot required.



Issue ID - BEING-10
Type - Minimum Stake Amount
Severity - Low Severity
File - being.sol
Line - 17
Status - Resolved

Description - The minimum stake amount is hardcoded, which reduces flexibility for future
changes.

Remediation - Allow the owner to update the minimum stake amount through a function,
ensuring it can adapt to future requirements.

SnapShot -



Issue ID - BEING-11
Type - floating pragma & Old solidity version
Severity - Informational
File - being.sol
Line - 3
Status - Resolved

Description - the contract is using an old solidity version, plus is it unlocked meaning it can be
compiled with any version from 0.8.0 to the latest version. It is not considered a best practice.

Remediation - use the latest stable solidity version and lock it to a fixed version. E.g: 0.8.24

SnapShot -


