vaccine that can produce cross-reactive antibodies. However, the success of such a vaccine relies greatly on its ability to provide protection not only against present versions of the virus but also the ones that are likely to emerge in the future. This can be achieved by identifying antibodies that can recognize relatively conserved epitopes that are maintained as such even after the occurrence of considerable variations (362). Even though several vaccine clinical trials are being conducted around the world, pregnant women have been completely excluded from these studies. Pregnant women are highly vulnerable to emerging diseases such as COVID-19 due to alterations in the immune system and other physiological systems that are associated with pregnancy. Therefore, in the event of successful vaccine development, pregnant women will not get access to the vaccines (361). Hence, it is recommended that pregnant women be included in the ongoing vaccine trials, since successful vaccination in pregnancy will protect the mother, fetus, and newborn.

The heterologous immune effects induced by Bacillus Calmette Guérin (BCG) vaccination is a promising strategy for controlling the COVID-19 pandemic and requires further investigations. BCG is a widely used vaccine against tuberculosis in high-

wrought havoc in China and caused a pandemic situation in the worldwide population, leading to disease outbreaks that have not been controlled to date, although extensive efforts are being put in place to counter this virus (25). This virus has been proposed to be designated/named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by the International Committee on Taxonomy of Viruses (ICTV), which determined the virus belongs to the Severe acute respiratory syndrome-related coronavirus category and found this virus is related to SARS-CoVs (26). SARS-CoV-2 is a member of the order *Nidovirales*, family *Coronaviridae*, subfamily Orthocoronavirinae, which is subdivided four genera, viz., Alphacoronavirus, into Betacoronavirus, Gammacoronavirus, and Deltacoronavirus (3, The 27). Alphacoronavirus and Betacoronavirus originate while bats, Gammacoronavirus from Deltacoronavirus have evolved from bird and swine gene pools (24, 28, 29, 275).

Coronaviruses possess an unsegmented, single-stranded, positive-sense RNA genome of around 30 kb, enclosed by a 5'-cap and 3'-poly(A) tail (30). The genome of SARS-CoV-2 is 29,891 bp long, with a G+C content of 38% (31). These viruses are encircled with an envelope containing viral

1

0

exponentially in other countries including South Korea, Italy and Iran. Of those infected, 20% are in critical condition, 25% have recovered, and 3310 (3013 in China and 297 in other countries) have died [2]. India, which had reported only 3 cases till 2/3/2020, has also seen a sudden spurt in cases. By 5/3/2020, 29 cases had been reported; mostly in Delhi, Jaipur and Agra in Italian tourists and their contacts. One case was reported in an Indian who traveled back from Vienna and exposed a large number of school children in a birthday party at a city hotel. Many of the contacts of these cases have been quarantined.

These numbers are possibly an underestimate of the infected and dead due to limitations of surveillance and testing. Though the SARS-CoV-2 originated from bats, the intermediary

DIAGNOSIS OF SARS-CoV-2 (COVID-19)

RNA tests can confirm the diagnosis of SARS-CoV-2 (COVID-19) cases with real-time RT-PCR or next-generation sequencing (148, 149, 245, 246). At present, nucleic acid detection techniques, like RT-PCR, are considered an effective method for confirming the diagnosis in clinical cases of COVID-19 (148). Several companies across the world are currently focusing on developing and marketing SARS-CoV-2-specific nucleic acid detection kits. Multiple laboratories are also developing their own in-house RT-PCR. One of them is the SARS-CoV-2 nucleic acid detection kit produced by Shuoshi Biotechnology (double fluorescence PCR method) (150). Up to 30 March 2020, the U.S. Food and Drug Administration (FDA) had granted 22 in vitro diagnostics Emergency Use Authorizations (EUAs), including for the RT-PCR diagnostic panel for the universal detection of SARS-like betacoronaviruses and specific detection of SARS-CoV-2, developed by the U.S. CDC (Table 1) (258, 259).