
Issue 30 | Oct 2010

Blender learning made easy

COVERART Confinement - by reynante

The Parent Inverse and the Origin of Children

Does Your Character Have Any Feelings

7 Elements of Digital Storytelling

The Importance Of Bodylanguage



Introduction
This is not an article about where ba-
bies come from. Actually what I'm
talking about is child objects, their lo-
cation, rotation and scale in relation
to their parent objects.

I want to write about this topic that
drove me nuts when I started learning
Blender. I'm talking about the obscure
and terrifying Parent Inverse. The first
thing that came to my mind when I
read about it was my father hanging

upside down. But I consider myself a good son, so I
quickly wiped that image off my mind.

I found it really confusing at the beginning: it was
very difficult to understand what exactly was the
Parent Inverse, and why the location coordinates of
the child object remained the same after aligning it
to the position of its parent with Alt-O (Clear Ori-
gin).

At that time I had used other 3D applications, in
which the origin of a child object was always the
location of its parent, as plain as that. But in
Blender things seemed to work a bit different, and I
couldn't find out exactly how, even in all the docu-
mentation around. It is still difficult to find that ex-
planation out there. Even when I posted the
question in Blender forums a time long ago, all I got
were replies of the type "I don't exactly know, but..."
or "I'm also wondering how it works, but...". I was
even asked "why on earth I wanted to know about
all that stuff". So that's why I'd like to shed some
light onto this obscure issue.

First, we will focus on location coordinates for this
first example, so scale and rotation will be left apart
for now.

Let's start with the following scenario: just one
cube and a UV sphere. Let's say the cube is located
at the global point (3,3,0), and the sphere at global
point (5,5,0). A Top Ortho view will be very useful
for this experiment.

What happens if we make the cube the parent of
the sphere? RMB the sphere, then Shift-RMB the
cube, press Ctrl-P, and select Object. Now the cube
is the parent of the sphere. Neither of the objects
have moved apparently. So, what are the coordi-
nates of both objects now? Well, actually the same
as before (you can check in the object transform
properties, hotkey N). But the real question is: what
is the origin of both objects now?

This is an easy question. Provided that no object
moved, and there wasn't any change in location co-
ordinates, the origin should be the same as before:
the global origin (0,0,0).

Does it make sense?

Well, for the parent cube, it definitely does, as it's
still a global object (it has no parent). But, shouldn't
the origin of the sphere be the location of its par-
ent? Actually it is, but with a small modification. If
we now move the parent cube to (4,4,0), what hap-
pens to the sphere? It is apparently at global
(6,6,0)... And its location (local) coordinates haven't
changed; they still are (5,5,0), as the Properties side-
bar shows. That means that its origin is now (1,1,0).
Why?

9

www.blenderart.org Issue 30 | Oct 2010 - "Once Upon an Image"

ARTICLE: The Parent Inverse and the Origin of Children

B
y 

Pe
p

 R
ib

a
l



It's obvious that the sphere origin moves with the par-
ent cube, but it's not exactly the location of the parent
cube. When the cube was at (3,3,0), the child origin
was at (0,0,0); now the cube is at (4,4,0) and the child
origin is at (1,1,0)...

So, we can easily see that the child origin is the parent
minus (3,3,0), or the parent origin plus (-3,-3,0), which
will give the same result. What is this (-3,-3,0) value?
Well, that is exactly the Parent Inverse...!

To speak properly, that is not exactly the Parent In-
verse. So before we proceed, we need now to introduce
briefly the concept of Transformation Matrices.

The Matrix

Even if you are not the One (and you are probably not,
don't fool yourself), you deserve to know that location,
rotation and scale of any object, in each of the 3 axes
(X, Y and Z) are stored internally in a matrix of 4x4
numbers, called the Transformation Matrix of the ob-
ject. The contents of the matrix of the active object are
shown in the Transform panel of the Properties sidebar
in the 3D View (hotkey N) while in Object Mode, trans-
lated to easily understandable coordinate numbers that
show the transformation values of the active object in
the 3 axes.

Every object has its own associated transformation ma-
trix. To know the effective location, rotation and scale
of a given object, we need two things: its transforma-
tion matrix, and its origin (the departing point of that
transformation). For a global object (that has no par-
ent), this origin is location (0,0,0), rotation (0,0,0), and
scale (1,1,1). For a child object, this origin is its parent
location, rotation and scale, but child objects also have
an additional matrix applied: the Parent Inverse.

So we need to introduce the concept of "inverse ma-
trix". What is an inverse transformation matrix? It's a
matrix that when applied to an object takes it back to
its origin. For instance, given a global object at its ori-
gin, if we apply a series of transformations on it
(location, rotations and scaling), that global object
ends up having a transformation matrix that shows all
these transformations. The inverse of this matrix, ap-
plied to the same object undoes all of them, and the
object rests again in its origin, with no rotations or
scaling at all.

To make it simple, let's go back to the cube/sphere ex-
ample. Let's focus on location only. At the very begin-
ning, when the sphere wasn't related to the cube yet,
the cube was at global (3,3,0). Let's simplify things, say-
ing (though it's wrong) that the transformation matrix
of the cube was "location (3,3,0)". The inverse transfor-
mation matrix, the one that would take the cube back
to its origin, is naturally "location (-3,-3,0)", as (3,3,0) +
(-3,-3,0) = (0,0,0), that is, matrix + inverse matrix = ori-
gin.

So, now we know what the inverse transformation ma-
trix of the cube is. Blender is not using this inverse

10

www.blenderart.org Issue 30 | Oct 2010 - "Once Upon an Image"

ARTICLE: The Parent Inverse and the Origin of Children

b
y 

Pe
p

 R
ib

a
l



matrix yet, but as soon as the sphere becomes the child
of the cube, that inverse matrix (of the parent cube) is
calculated and effectively applied to the child sphere.
That's how we find the real origin of the sphere.

So to summarize: at the moment of parenting, the matrix
that would take the parent to its origin (the parent's in-
verse transformation matrix) is calculated and applied to
the new child.

As you might remember, the effective origin of the
sphere was the location of the parent object, plus
"location (-3,-3,0)". That is, the location of the parent
plus the Parent Inverse. So why does Blender act this
way? Why does it use the inverse transformation ma-
trix of a parent object into child objects? Let's actually
see what would happen if Blender didn't do so. There
are 2 options:

a What if Blender parents the sphere to the cube
without applying the Parent Inverse to the
sphere, and without changing the transformation
matrix of the sphere child? That is, without
changing its location, rotation and scale values.
This means that as the origin of the sphere is
changing from the global origin to the parent ob-
ject location, the actual sphere would change its
position visibly on screen. Thus, with the position
of the sphere being (5,5,0), and its new origin
(3,3,0), we would automatically see the sphere
jump to (3,3,0) + (5,5,0), that is, (8,8,0).

b What if Blender wants to avoid this jump at the
moment of parenting, and still not apply the Par-
ent Inverse? Then the actual location coordinates
of the sphere would need to be changed. In this
case, as the new origin is (3,3,0), the new location
coordinates of the sphere should be changed to
(2,2,0) so that it remains at global (5,5,0), as
(3,3,0) + (2,2,0) = (5,5,0). But that wouldn't be too

suitable, as we would be changing the object at-
tributes (transformation matrix) for the sake of
parenting, which is not justified. What would
happen to such a sphere if we cleared the parent-
ing relation with the cube, or we deleted the
cube? It would jump to (2,2,0), which is bad. So
this one is not an option.

That said, the only way to preserve the object at-
tributes (its own transformation matrix) and yet avoid
the jump when parenting, is to apply the Parent Inverse
to the child.

So to summarize all this, the global location of the
child is: the location of the parent + the Parent Inverse as
it was at the moment of parenting + the (local) location
coordinates of the child.

We speak of global coordinates when they are relative
to the global origin; local coordinates are relative to
some parent object. So the transformation properties
of an object become local as soon as we parent the ob-
ject, and they are global as soon as we unparent it.

So, to make it easier to understand we have focused
exclusively on location, but as I mentioned earlier, the
parent inverse transformation matrix (the Parent In-
verse) is made up of all three types of transformations:
location, rotation and scale. There is no need to go over
the example again focusing on these other transforma-
tion types, as they work in a similar way. If the parent
has a rotation of (10,-40,90), the Parent Inverse matrix
will have a rotation of (-10,40,-90); if the parent's scale
is (2,1,2), the scale of the Parent Inverse applied to the
child will be (0.5,1,0.5), and so on...

Keep in mind that as soon as the parenting is done, the
Parent Inverse matrix applied to the child is the inverse
of the parent's transformation matrix at the very mo-
ment of parenting; that is, that matrix is never changed

11

www.blenderart.org Issue 30 | Oct 2010 - "Once Upon an Image"

ARTICLE: The Parent Inverse and the Origin of Children

b
y 

Pe
p

 R
ib

a
l



afterwards, even if we apply one thousand transforma-
tions to the parent. There is a way to change that ma-
trix applied to the child as you will see next.

Another question to consider is that a global object, an
object that has no parent, doesn't have a Parent Inverse
applied, naturally. This only affects child objects.

Clear Origin (Alt-O)

In the sphere/cube example, what will happen if we
clear the sphere location (Alt-G)? Its location coordi-
nates will go (0,0,0), and so it will jump to its origin. If
you remember, that origin is exactly its parent cube
location plus the cube inverse matrix at the moment of
parenting. This means that the sphere will jump to the
position of the parent plus (-3,-3,0).

In Blender, with the child object active, you can press
Alt-P and select Clear Parent Inverse. What does that
do? Well, it clears the Parent Inverse... Surprised? Me
too.

In this case (with location already cleared) that means
that the sphere jumps to the same location of its par-
ent. When the Parent Inverse is cleared, the origin of
the child is actually the parent location, rotation and
scaling, as simple as that. The Parent Inverse is ignored
from then on, unless we modify it.

Clear Parent Inverse doesn't have any effect on non-
child objects.

However, there is another way to make the child jump
directly to the location of the parent without clearing
the child location and the Parent Inverse. It's the com-
mand Clear Origin (Alt-O). This command only affects
location (not rotation or scale). It makes the child ob-
ject jump to the same global position of its parent, so
that we see them placed in the same global coordinate.

And it does it without changing the child's attributes: it
actually changes the values of the child's Parent Inverse
matrix accordingly which will no longer have the value
calculated at the time of parenting. This is the only way
to change the Parent Inverse matrix of a child object in
Blender (unless you use a Python script to change its
values, naturally).

Unparenting (Alt-P)

We have already seen the Clear Parent Inverse (Alt-P)
command. There are other uses for Alt-P. None of these
have effect on global objects:

The first one is Clear Parent, which will cancel the
parenting relationship between the selected object(s)
and his (their) parents. The effect of the transforma-
tions of the parent will be discarded, and so the for-
merly child object will jump according to its new
(global) origin, in relation to location, rotation and
scale. Its local coordinates will become global but un-
changed in value.

The other one is Clear and Keep Transformation. This
one also cancels the parenting relationship, but it
changes the child object attributes (location, rotation,
scale) so that the transformations of the parent are ap-
plied to the child and when the child becomes a global
object, no apparent change is seen on screen. In other
words, it translates its local coordinates to the corre-
sponding global ones.

Parenting methods

Besides the usual Ctrl-P parenting command, there is
another one: Make Parent without inverse (Shift-Ctrl-
P). This command is equivalent to making a usual
parenting (Ctrl-P), then clearing the Parent Inverse (Alt-
P), and finally clearing the child's location

12

www.blenderart.org Issue 30 | Oct 2010 - "Once Upon an Image"

ARTICLE: The Parent Inverse and the Origin of Children

b
y 

Pe
p

 R
ib

a
l



(just the location, with Alt-G). The child jumps into the
same global point where its parent is, without Parent
Inverse matrix applied, and with its transform proper-
ties intact, except for its location coordinates which
become (0,0,0).

And that's pretty much all, folks. I hope to have made
this topic a bit more clear, as it was a difficult thing to
grasp, in my case. But it's known that things between
parents and children are always very difficult

Be good!

13

www.blenderart.org Issue 30 | Oct 2010 - "Once Upon an Image"

ARTICLE: The Parent Inverse and the Origin of Children

 works as an IT Engineer. How-
ever he is very interested in the audiovisual
and multimedia world, and he has worked in a
few TV productions and short films as a direc-
tor, actor, screenplay writer and video editor.

He has made a few small 3D works for TV using Blender.

b
y 

Pe
p

 R
ib

a
l


