
Building on Exx

See live version

EXX is the finest platform to build your decentralized Applications. EXX Network is the
architecture for building web3 solutions aimed at speeding up and accelerating global web3
adoption. Start building on EXX and together, let’s eliminate the blockers of adoption, and help
more users delve into the world of web3 without fear or distrust.

This documentation is the guide that you need to explore the EXX blockchain. In it, you will find
useful resources, links, tutorials and instructions that will help you navigate the network.

Developer Starter
Using Exx is easy. If you're an Ethereum Developer, you can develop with Exx. All the tools that
you are familiar with are supported on the blockchain. Name them; Truffle, Remix, Web3js,
Ethersjs etc.

All Exx Test network related details can be found in the network docs

● Setup Metamask Wallet
● Deploy your Contracts on Exx Network

○ Using Remix
○ Using Truffle
○ Using Hardhat

● Connecting to Exx with RPC by adding Exx Network on Metamask.

Already have a dApp?
● Migrate from Ethereum chain or any EVM compatible chain. Deploy all your smart

contracts directly on the Exx Network. You don't have to worry about the underlying
architecture, as long as it is EVM compatible!

● Deploying your dApp on Exx

Building a new dApp on Exx?
Start building!

● Full Stack DApp: Tutorial Series
● Getting to know your tools:

○ Web3js, Remix, Truffle, Metamask
● Writing your first DApp on Exx! (updating - feranmi)

https://docs.exx.network/
https://web.archive.org/web/20210617101631/https://docs.matic.network/docs/develop/network-details/network
https://web.archive.org/web/20210617101631/https://docs.matic.network/docs/develop/metamask/hello
https://web.archive.org/web/20210617101631/https://docs.matic.network/docs/develop/remix
https://web.archive.org/web/20210617101631/https://docs.matic.network/docs/develop/truffle
https://web.archive.org/web/20210617101631/https://docs.matic.network/docs/develop/hardhat
https://web.archive.org/web/20210617101631/https://docs.matic.network/docs/develop/metamask/testnet
https://web.archive.org/web/20210617101631/https://docs.matic.network/docs/integrate/quickstart
https://web.archive.org/web/20210617101631/https://kauri.io/full-stack-dapp-tutorial-series/5b8e401ee727370001c942e3/c
https://web.archive.org/web/20210617101631/https://www.dappuniversity.com/articles/web3-js-intro
https://web.archive.org/web/20210617101631/https://docs.matic.network/docs/develop/remix/
https://web.archive.org/web/20210617101631/https://docs.matic.network/docs/develop/truffle
https://web.archive.org/web/20210617101631/https://docs.matic.network/docs/develop/metamask/hello
https://web.archive.org/web/20210617101631/https://docs.matic.network/docs/develop/full-stack-dapp-with-pos

Learn the developer tools
● CryptoZombies
● Full stack dapp tutorial series
● Infura Docs
● Truffle Suite Docs (Recommended)
● Truffle tutorials (Recommended)
● Parity Wiki
● Geth docs
● Remix
● OpenZeppelin Docs
● Ethernaut

○ A game that teaches security
● Capture the Ether

4,8.
9 8 game that teaches security

Learn the Basics of Development
● Full stack dapp tutorial series
● Truffle tutorials
● Dapp University
● ConsenSys Academy Developer Program On-Demand course
● What is Ethereum?
● Read Mastering Ethereum
● OpenZeppelin Learn Docs

https://web.archive.org/web/20210617101631/https://cryptozombies.io/
https://web.archive.org/web/20210617101631/https://kauri.io/collection/5b8e401ee727370001c942e3/full-stack-dapp-tutorial-series
https://web.archive.org/web/20210617101631/https://infura.io/docs
https://web.archive.org/web/20210617101631/https://www.trufflesuite.com/docs
https://web.archive.org/web/20210617101631/https://www.trufflesuite.com/tutorials
https://web.archive.org/web/20210617101631/https://wiki.parity.io/
https://web.archive.org/web/20210617101631/https://geth.ethereum.org/
https://web.archive.org/web/20210617101631/https://remix.ethereum.org/
https://web.archive.org/web/20210617101631/https://docs.openzeppelin.com/
https://web.archive.org/web/20210617101631/https://ethernaut.openzeppelin.com/
https://web.archive.org/web/20210617101631/https://capturetheether.com/
https://web.archive.org/web/20210617101631/https://kauri.io/collection/5b8e401ee727370001c942e3/full-stack-dapp-tutorial-series
https://web.archive.org/web/20210617101631/https://www.trufflesuite.com/tutorials
https://web.archive.org/web/20210617101631/https://www.youtube.com/channel/UCY0xL8V6NzzFcwzHCgB8orQ
https://web.archive.org/web/20210617101631/https://consensys.net/academy/ondemand/
https://web.archive.org/web/20210617101631/https://blockgeeks.com/guides/ethereum/
https://web.archive.org/web/20210617101631/https://github.com/ethereumbook/ethereumbook
https://web.archive.org/web/20210617101631/https://docs.openzeppelin.com/learn/

Getting Started

Connect to EXX Testnet on Metamask
In order to view and operate on the EXX testnet, you will need to add our RPC and other
credentials to your Metamask.

You can either add EXX network automatically on EXXscanor add mannually.

In this tutorial, we will cover how to add manually.

How to Add Manually​
1. Open Metamask extension or the app on mobile.
2. Click on the Networks, then click on Add network or Custom RPC whatever your

version shows.

https://exxscan.com/

3. Enter EXX Testnet as the network name
4. Enter https://ds2.exx.network for the RPC
5. Enter 47 for the chain ID
6. Enter EXX for the currency symbol

7. Enter https://exxscan.com for the Block explorer then save.

8. Save and start using EXX.

How to add on EXXscan​

1. Proceed to the explorer https://exxscan.com
2. Scroll to the bottom and find the button showing Add to Metamask.

3. Click on Add to Metamask and then you will now be connected to the EXX
testnet on your metamask wallet.

https://exxscan.com/

Using Remix

Overview

Using Truffle

Technical requirements of truffle requires that before you proceed, you need to install;

● Node.js v8+ LTS and npm (comes with Node)
● Git

Once installed, here is the command to install truffle

npm install -g truffle

To confirm that Truffle is properly installed, type the truffle version on a terminal. Should there be
an error, see that your npm modules are added to your path.

New to Truffle? follow the Getting Started by truffle to set up the truffle environment.

Truffle-config

● Go to truffle-config.js
● Update the truffle-config with Exx-network-credentials.

N:B: it requires mnemonic to be passed in for Exx Provider. Mnemonic is the 12 word seed
phrase for the account you'd like to deploy from. Create a new .secret file in the root directory
and enter your 12 word mnemonic seed phrase to get started.
To get your seedwords from metamask wallet; go to Metamask Settings, from the menu click
Security and Privacy, there, you will see a button that says reveal seed words.

Deploying on Exx Network
Run this command in root of the project directory:
$ truffle migrate --network exx

Contract will be deployed on Exx Testnet, it will look like this:
2_deploy_contracts.js
=====================

Replacing 'MyContract'

> transaction hash:

0x1c94d095a2f629521344885910e6a01076188fa815a310765679b05abc09a250

https://web.archive.org/web/20210628224813/https://nodejs.org/en/
https://web.archive.org/web/20210628224813/https://git-scm.com/
https://web.archive.org/web/20210628224813/https://www.trufflesuite.com/docs/truffle/quickstart

> Blocks: 5 Seconds: 5
> contract address: 0xbFa33D565Fcb81a9CE8e7a35B61b12B04220A8EB
> block number: 2371252
> block timestamp: 1578238698
> account: 0x9fB29AAc15b9A4B7F17c3385939b007540f4d791
> balance: 79.409358061899298312
> gas used: 1896986
> gas price: 0 gwei
> value sent: 0 ETH
> total cost: 0 ETH

Pausing for 2 confirmations...

> confirmation number: 5 (block: 2371262)

initialised!

> Saving migration to chain.
> Saving artifacts

> Total cost: 0 ETH

Summary
=======
> Total deployments: 2
> Final cost: 0 ETH

Remember your address, transaction_hash and other details provided would differ, Above is just
to provide an idea of structure.
Congratulations! You have successfully deployed HelloWorld Smart Contract. Now you can
interact with the Smart Contract.
You can check the deployment status here: https://mumbai-explorer.matic.today/

https://web.archive.org/web/20210628224813/https://mumbai-explorer.matic.today/

Using HardHat

Setting up the development environment

Technical requirements of HardHat requires that before you proceed, you need to install;

● Node.js v8+ LTS and npm (comes with Node)
● Git

Once installed, installing hardhat requires you to create an npm project by going to an empty
folder, running npm in it, and following its instructions.
Once your project is ready, you should run
$ npm install --save-dev hardhat

Create a sample project to run npx hardhat in your project folder. Go through these steps to try
out the sample task, compile test, and deploy the sample contract.

The sample project will request you to install hardhat-waffle and hardhat-ethers.You can learn
more about it in this guide

hardhat-config#

● Go to hardhat.config.js
● Update the hardhat-config with matic-network-crendentials.
● create .secret file in the root to store your private key

const fs = require('fs');
const privatekey = fs.readFileSync(".secret").toString().trim();
module.exports = {
defaultNetwork: "matic",
networks: {
hardhat: {
},
matic: {
url: "https://rpc-mumbai.maticvigil.com",
accounts: [privateKey]

}
},
solidity: {

https://web.archive.org/web/20210421082301/https://nodejs.org/en/
https://web.archive.org/web/20210421082301/https://git-scm.com/
https://web.archive.org/web/20210421082301/https://hardhat.org/getting-started/#quick-start
https://web.archive.org/web/20210421082301/https://docs.matic.network/docs/develop/hardhat/#hardhat-config

version: “0.7.0”,
settings: {

optimizer: {
enabled: true,
runs: 200

}
}

},
paths: {
sources: "./contracts",
tests: "./test",
cache: "./cache",
artifacts: "./artifacts"

},
mocha: {
timeout: 20000

}
}

Deploying on Exx Network#
Run this command in root of the project directory:
$ npx hardhat run scripts/sample-script.js --network matic
Contract will be deployed on Exx Testnet, it look like this:
Compilation finished successfully
Greeter deployed to: 0xfaFfCAD549BAA6110c5Cc03976d9383AcE90bdBE
Remember your address would differ, Above is just to help with an idea of structure.
Congratulations! You have successfully deployed Greeter Smart Contract. Now you can interact
with the Smart Contract.
You can check the deployment status here: https://mumbai-explorer.matic.today/

https://web.archive.org/web/20210421082301/https://docs.matic.network/docs/develop/hardhat/#deploying-on-matic-network
https://web.archive.org/web/20210421082301/https://mumbai-explorer.matic.today/

Exx Testnet
Exx Testnet is the test version of the Exx mainnet to be released. This is done to let developers
and validators to experiment without having to use real assets.
Testnet coins are separate, are distinct from actual tokens/assets, and do not have any value
whatsoever.

N:B: This documentation contains details for the RPC - HTTP, WS and Dagger endpoints. There
is provision for setting up your personal full node, if that is what you prefer.

Network name EXX Testnet

Chain ID 47

Gas token EXX (testnet)

RPC https://ds2.exx.network

Websocket Coming soon

Block Explorer https://testnet.exxscan.com

IMPORTANT
EXX network native token is EXX which will be used as gas fee.

Creating a MetaMask Wallet

Metamask is a free web3 browser extension that lets applications to read and interact with EVM
compatible blockchains such as EXX.

To create a wallet, you need to install a metamask extension which can be found for any
browser of your preference.

For this tutorial, we will be using the google chrome as an example

Adding Metamask Extension
1. Visit https://metamask.io or search for metamask extension using any browser of

your choice. (Let us use chrome for the purpose of illustration).
2. Click install MetaMask as a chrome extension.
3. Click Add to Chrome.
4. Click Add Extension.

You have successfully installed metamask extension

Next step is to create an account

Step 2. Create an account
The next step is to create an account.

1. Click on the MetaMask icon in the upper right corner to open the extension.
2. To install the latest version of MetaMask, click Try it now.
3. Click Continue.
4. Create a strong password and click Create. Ensure you store your password

somewhere safe
5. Proceed by clicking Next, then accept Terms of Use.
6. Click Reveal secret words.
7. You will see a 12 word seed phrase. Save seed words as a file or copy them to a safe

place and click Next.
Reveal secret words and copy your secret backup phrase to a safe place

Random security tips: Write this phrase on a piece of paper and store it in a secure location. If
you want even more security, write it down on multiple pieces of paper and store each in 2–3
different locations.

https://web.archive.org/web/20210507002218/https://metamask.io/

8. Verify your secret phrase by selecting the previously generated phrase. When done,
click Confirm.

By “solving this puzzle” you are confirming that you know your secret phrase
Congratulations! You have successfully created your MetaMask account. A new Ethereum
wallet address was automatically generated for you!

Configuring Exx on Metamask

This tutorial contains how you can add custom XRC20 tokens to any network on Metamask.

Switch the network on Metamask to point to the EXX Testnet. (link to network connection)

On Metamask, this will be shown as EXX Testnet or whatever you have named it when adding.

Configuring Exx TST tokens to Metamask
Adding a Test token (XRC20) to your Metamask account on EXX testnet. You must have gotten
the test tokens before you can see any amount in your wallet. You can claim from the faucet.

To display your tokens on your account on the Exx Network, you can click on the Add Tokens
option in Metamask. It will take you to a screen.

Click on the Custom Token tab and copy-paste the address below in the Token Address field.

The Test token contract address is 0x3f152B63Ec5CA5831061B2DccFb29a874C317502.

N:B: The TEST token is an example XRC20 token contract that is used throughout the Exx
Network developer docs for the purpose of illustration.

The other fields will auto-populate.

Click on Save and then click on Add Tokens.

The TEST token should now be displayed on your account on Metamask.

Assets

EXX Native token
EXX is the native token of EXX network, similar to ETH in Ethereum. EXX is used to
interact with EXX Testnet and pay gas fees. XRC20 is the standard toke type on the
EXX network just as ERC20 is standard for the ethereum blockchain.

EVM Native Asset Call​

An EVM Transaction is composed of the following :

● nonce Scalar value equal to the number of transactions sent by the sender.
● gasPrice Scalar value equal to the number of Wei (1 Wei = 10^-18 AVAX) paid

per unit of gas to execute this transaction.
● gasLimit Scalar value equal to the maximum amount of gas that should be used

in executing this transaction.
● to The 20 byte address of the message call's recipient. If the transaction is

creating a contract, to is left empty.
● value Scalar value of native asset (AVAX), in Wei (1 Wei = 10^-18 AVAX), to be

transferred to the message call's recipient or in the case of a contract creation, as
an endowment to the newly created contract.

● v, r, s Values corresponding to the signature of the transaction.
● data Unlimited size byte array specifying the input data to a contract call or, if

creating a contract, the EVM bytecode for the account initialization process.

EXX Testnet token​

In order to interact EXX Testnet, you need to have the EXX native token. On testnet, it is
free to claim these tokens at specified intervals.

To claim tokens: use the faucet

How to use the faucet​
1. Connect to the faucet via https://faucet.exx.network

https://faucet.exx.network/
https://faucet.exx.network/

2. Enter the wallet address you want faucet to send EXX to.
3. Click on Submit.
4. Click on Transfer to receive the tokens.

XRC20: Tokens on EXX

1. Summary​

The XRC20 interface as proposed and implemented through the EIP20

2. Abstract​

The following standard defines the implementation of APIs for token smart contracts. It
is proposed by deriving the ERC20 protocol of Ethereum and provides the basic
functionality to transfer tokens and allow tokens to be approved so they can be spent by
another on-chain third party.

3. Motivation​

A standard interface allows any tokens on EXX to be used by other applications
including wallets, decentralized apps, decentralized exchanges etc. in a consistent way.

4. Specification​

4.1 Token​

NOTES:

https://eips.ethereum.org/EIPS/eip-20

● The following specifications use syntax from Solidity 0.5.16 (or above)
● Callers MUST handle false from returns (bool success). Callers MUST NOT

assume that false is never returned!

4.1.1 Methods​

name​
function name() public view returns (string)

● Returns the name of the token - e.g. "MyToken".
● OPTIONAL - This method can be used to improve usability, but interfaces and

other contracts MUST NOT expect these values to be present.

symbol​
function symbol() public view returns (string)

● Returns the symbol of the token. E.g. “HIX”.
● OPTIONAL - This method can be used to improve usability, but interfaces and

other contracts MUST NOT expect these values to be present.

decimals​
function decimals() public view returns (uint8)

● Returns the number of decimals the token uses - e.g. 8, means to divide the
token amount by 100000000 to get its standard representation.

● OPTIONAL - This method can be used to improve usability, but interfaces and
other contracts MUST NOT expect these values to be present.

totalSupply​
function totalSupply() public view returns (uint256)

● Returns the total token supply.

balanceOf​
function balanceOf(address _owner) public view returns (uint256 balance)

● Returns the account balance of another account with address _owner.

getOwner​
function getOwner() external view returns (address);

● Returns the xrc20 token owner.

transfer​

function transfer(address _to, uint256 _value) public returns (bool success)

● Transfers _value amount of tokens to address _to, and MUST fire the Transfer
event. The function SHOULD throw if the message caller’s account balance does
not have enough tokens to spend.

● NOTE - Except transfer of 0 value is disabled in a contract, Transfers of 0 values
MUST be treated as normal transfers and fire the Transfer event.

transferFrom​
function transferFrom(address _from, address _to, uint256 _value) public returns (bool
success)

● Transfers _value amount of tokens from address _from to address _to, and
MUST fire the Transfer event.

● The transferFrom method is used for a withdraw workflow, allowing contracts to
transfer tokens on your behalf. This can be used for example to allow a contract
to transfer tokens on your behalf and/or to charge fees in sub-currencies. The
function SHOULD throw unless the _from account has deliberately authorized
the sender of the message via some mechanism.

● NOTE - Except transfer of 0 value is disabled in a contract, Transfers of 0 values
MUST be treated as normal transfers and fire the Transfer event.

approve​
function approve(address _spender, uint256 _value) public returns (bool success)

● Allows _spender to withdraw from your account multiple times, up to the _value
amount. If this function is called again it overwrites the current allowance with
_value.

● NOTE - To prevent attack vectors like the one described here, clients SHOULD
make sure to create user interfaces in such a way that they set the allowance
first to 0 before setting it to another value for the same spender. THOUGH The
contract itself shouldn’t enforce it, to allow backwards compatibility with contracts
deployed before.

allowance​
function allowance(address _owner, address _spender) public view returns (uint256
remaining)

● Returns the amount which _spender is still allowed to withdraw from _owner.

Events​

Transfer​

https://docs.google.com/document/d/1YLPtQxZu1UAvO9cZ1O2RPXBbT0mooh4DYKjA_jp-RLM/

event Transfer(address indexed _from, address indexed _to, uint256 _value)

● MUST trigger when tokens are transferred, including zero value transfers.
● A token contract which creates new tokens SHOULD trigger a Transfer event

with the _from address set to 0x0 when tokens are created.

Approval​
event Approval(address indexed _owner, address indexed _spender, uint256 _value)

MUST trigger on any successful call to approve(address _spender, uint256 _value).

Wallets

Decentralized Storages

IPFS

One of the most appreciated features of web3 networks is that they store data. Exx can store
data effectively but would cost too much

InterPlanetary File System is a distributed system for storing and accessing files, websites,
applications, and data.

Using IPFS, you don't need to store entire files on EXX. You are only storing the hash of the
IPFS on the Exx Network.

Filecoin
It is a web3 digital storage and data retrieval technique built on top of IPFS and supports storing
data long-term via on-chain deals.

Storage Helpers (IPFS + Filecoin)​

● Estuary: Pinning service that stores and retrieves data on both IPFS and Filecoin
networks via simple API calls (video).

● NFT.storage: NFT storage service that stores and retrieves data relating to NFTs on
IPFS and Filecoin (video).

● Web3.storage: Data storage service that stores and retrieves data on IPFS and Filecoin
(video)

● Textile Powergate: Highly configurable wrapper for IPFS+Filecoin inside a Docker
container.

● Fleek Space Daemon and Space SDK: For decentralized browser, mobile, or desktop
development.

Mint NFTs

This tutorial will teach you to mint an NFT using the Exx blockchain and IPFS/Filecoin storage
via NFT.Storage.

https://estuary.tech/
https://www.youtube.com/watch?v=AHAMHbpioGw
https://nft.storage/
https://youtu.be/Ckb4RRJo-W0
https://web3.storage/
https://youtu.be/lPEqg6oL3Nk
https://docs.textile.io/powergate/
https://fleek.co/space-sdk/

The tutorial will walk you through
● how to create and deploy a standardized smart contract,
● storing metadata and assets on IPFS, and Filecoin via the NFT.Storage API. and
● minting the NFT to your own wallet on Exx

Introduction​
In this tutorial we aim to;

1. fulfill three unique features with our minting process:
- Scalability of the minting process in terms of cost and throughput. Web3 needs to

handle all minting requests and make minting cheap.
- NFT Durability : assets can be long-lived, they must remain usable during their

entire life.
- NFT Immutability and the asset it represents to prevent unwanted exploration by

malicious hackers, Thieves and Attacks.
2. Show you an overview of the NFT minting process, learn how to store a digital asset with

NFT.Storage, as well as how to use this digital asset to mint your NFT on Exx.

Prerequisites​
General knowledge about NFTs will give you background and context.

To test and run the code in this tutorial, you will need a working Node.js installation.

You'll also need an Exx wallet on the Exx Testnet with a small amount of the EFT.

1. Download and install Metamask.
2. Connect Metamask to Exx testnet and select it in the dropdown menu. We will use Exx

testnet to mint our NFT. Remember it is free of charge
3. Receive MATIC token to your wallet by using the faucet
4. Select Exx testnet, then paste your wallet address from Metamask into the form

To mint NFT, we need to pay a little amount which is charged by miners for operations to
add new transactions to the network

5. Copy your private key from Metamask by clicking on the three dots in the top right
corner. Selecting 'Account details'.

6. On the bottom you can find a button to export your private key. Click it and enter your
password when you receive the prompt. (You can copy and paste the private key in a
text file for now. We will use it later in the course of this tutorial when interacting with the
network)

7. You will need a text or code editor. We recommend you choose an editor with language
support for both JavaScript and Solidity.

https://nodejs.org/en/download/package-manager/
https://metamask.io/

Preparation​

Get an API key for NFT.storage​

You need an API key to use NFT.Storage.

1. Head over to NFT.Storage to log in with your email address.
2. You will receive an email with a magic link that signs you in -- no password needed.
3. Once you are logged in, go to API Keys via the navigation bar. There, You will find a

button to create a New Key. When prompted for an API key name, you can freely choose
one or use “polygon + NFT.Storage”.

Set up your workspace​

Create a new empty folder that we can use as our workspace for this tutorial. Give it any name
and store it in any computer file location of your choice. Open up a terminal and navigate to the
newly created folder.

We will install the following Node.js dependencies:

● Hardhat and Hardhat-Ethers, a development environment for Ethereum (and Ethereum
compatible blockchains like Polygon).

● OpenZeppelin, a collection of smart contracts featuring standardized NFT base
contracts.

● NFT.Storage, a library to connect to the NFT.Storage API.
● Dotenv, a library to handle environment files for configuration (e.g., injecting private keys

into the script).

Use the following command to install all dependencies at once:
npm install hardhat @openzeppelin/contracts nft.storage dotenv @nomiclabs/hardhat-ethers

Hardhat needs to be initialized in the current folder. In order to start the initialization, execute:
npx hardhat

When prompted, choose Create an empty hardhat.config.js. Your console output should look
like this:
✔ What do you want to do? · Create an empty hardhat.config.js
✨ Config file created ✨

We will do some modifications to the hardhat configuration file hardhat.config.js to support the
Polygon Mumbai test network. Open the hardhat.config.js that was created in the last step.

https://nft.storage/login/

Please note that we are loading your Polygon wallet private key from an environment file and
that this environment file must be kept safe. You can even use other rpc link, as per
requirement.
/**
* @type import('hardhat/config').HardhatUserConfig
*/
require("@nomiclabs/hardhat-ethers");
require('dotenv').config();
const { PRIVATE_KEY } = process.env;
module.exports = {
defaultNetwork: "PolygonMumbai",
networks: {
hardhat: {
},
PolygonMumbai : {
url: "https://rpc-mumbai.maticvigil.com",
accounts: [PRIVATE_KEY]

}
},
solidity: {
version: "0.8.12",
settings: {
optimizer: {
enabled: true,
runs: 200

}
}

},
}

Create a new file called .env which will hold your API key for NFT.Storage and your
Polygon wallet. The content of the .env file should look like the listing below:
PRIVATE_KEY="Your Private Key"
NFT_STORAGE_API_KEY="Your Api Key"

Replace the placeholders with the API key you created during preparation and your
Polygon wallet private key.

To keep our project organized, we'll create three new folders:
1. contracts, for the Exx contracts written in Solidity.
2. assets, containing the digital asset we will mint as an NFT.

https://docs.polygon.technology/docs/develop/network-details/network

3. scripts, as helpers to drive the preparation and minting process.

Execute the following command:
mkdir contracts assets scripts

Finally, we will add an image to the assets folder. The image is our artwork that we will upload to
NFT.Storage and mint on Exx. We will name it MySampleNFT.png for now.

Minting your NFT​

Storing asset data with NFT.Storage​

We will use NFT.Storage to store our NFT and its metadata.

Create a script called store-asset.mjs below the scripts directory. The contents are listed below:
import { NFTStorage, File } from "nft.storage"
import fs from 'fs'
import dotenv from 'dotenv'
dotenv.config()

const { NFT_STORAGE_API_KEY } = process.env

async function storeAsset() {
const client = new NFTStorage({ token: NFT_STORAGE_API_KEY })
const metadata = await client.store({

name: 'ExampleNFT',
description: 'My ExampleNFT is an awesome artwork!',
image: new File(

[await fs.promises.readFile('assets/MyExampleNFT.png')],
'MyExampleNFT.png',
{ type: 'image/png' }

),
})
console.log("Metadata stored on Filecoin and IPFS with URL:", metadata.url)

}

storeAsset()
.then(() => process.exit(0))
.catch((error) => {

console.error(error);
process.exit(1);

});

The main part of the script is the storeAsset function. It creates a new client connecting to
NFT.Storage using the API key you created earlier. Next we introduce the metadata consisting
of name, description, and the image. Note that we are reading the NFT asset directly from the
file system from the assets directory. At the end of the function we will print the metadata URL
as we will use it later when creating the NFT on Polygon.

After setting up the script, you can execute it by running:
node scripts/store-asset.mjs

Your output should look like the listing below, where HASH is the CID to the art you just stored.
Metadata stored on Filecoin/IPFS at URL: ipfs://HASH/metadata.json

Creating your NFT on Exx​

Create the smart contract for minting​

First, we will create a smart contract that will be used to mint the NFT. We will write the smart
contract in Solidity.

Create a new file for our NFT smart contract called SampleNFT.sol inside the contracts
directory. You can copy the code of the listing below:
// Contract based on https://docs.openzeppelin.com/contracts/4.x/erc721
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.12;

import "@openzeppelin/contracts/token/ERC721/ERC721.sol";
import "@openzeppelin/contracts/token/ERC721/extensions/ERC721URIStorage.sol";
import "@openzeppelin/contracts/utils/Counters.sol";
import "@openzeppelin/contracts/access/Ownable.sol";

contract ExampleNFT is ERC721URIStorage, Ownable {
using Counters for Counters.Counter;
Counters.Counter private _tokenIds;

constructor() ERC721("NFT", "ENFT") {}

function mintNFT(address recipient, string memory tokenURI)
public onlyOwner
returns (uint256)

{
_tokenIds.increment();

uint256 newItemId = _tokenIds.current();
_mint(recipient, newItemId);
_setTokenURI(newItemId, tokenURI);

https://soliditylang.org/

return newItemId;
}

}

To be a valid NFT, your smart contract must implement all the methods of the ERC-721
standard.

We use the implementation of the OpenZeppelin library, which already provides a set of basic
functionalities and adheres to the standard.

At the top of our smart contract, we import three OpenZeppelin smart contract classes:

\@openzeppelin/contracts/token/ERC721/ERC721.sol contains the implementation of the basic
methods of the ERC-721 standard, which our NFT smart contract will inherit. We use the
ERC721URIStorage, which is an extension to store not just the assets but also metadata as a
JSON file off-chain. Like the contract, this JSON file needs to adhere to ERC-721.

\@openzeppelin/contracts/utils/Counters.sol provides counters that can only be incremented or
decremented by one. Our smart contract uses a counter to keep track of the total number of
NFTs minted and to set the unique ID on our new NFT.

\@openzeppelin/contracts/access/Ownable.sol sets up access control on our smart contract, so
only the owner of the smart contract (you) can mint NFTs.

After our import statements, we have our custom NFT smart contract, which contains a counter,
a constructor, and a method to actually mint the NFT. Most of the hard work is done by the base
contract inherited from OpenZeppelin, which implements most of the methods we require to
create an NFT adhering to the ERC-721 standard.

The counter keeps track of the total number of NFTs minted, which is used in the minting
method as a unique identifier for the NFT.

In the constructor, we pass in two string arguments for the name of the smart contract and the
symbol (represented in wallets). You can change them to whatever you like.

Finally, we have our method mintNFT that allows us to actually mint the NFT. The method is set
to onlyOwner to make sure it can only be executed by the owner of the smart contract.

address recipient specifies the address that will receive the NFT at first

string memory tokenURI is a URL that should resolve to a JSON document that describes the
NFT's metadata. In our case it's already stored on NFT.Storage. We can use the returned IPFS
link to the metadata JSON file during the execution of the method.

https://ethereum.org/en/developers/docs/standards/tokens/erc-721/
https://ethereum.org/en/developers/docs/standards/tokens/erc-721/
https://openzeppelin.com/

Inside the method, we increment the counter to receive a new unique identifier for our NFT.
Then we call the methods provided by the base contract from OpenZeppelin to mint the NFT to
the recipient with the newly created identifier and setting the URI of the metadata. The method
returns the unique identifier after execution.

Deploy the smart contract to Exx

Create a new file titled deploy-contract.mjs within the scripts directory.

Copy the contents of the listing below into that file and save it.

async function deployContract() {
const ExampleNFT = await ethers.getContractFactory("ExampleNFT")
const exampleNFT = await ExampleNFT.deploy()
await exampleNFT.deployed()
// This solves the bug in Mumbai network where the contract address is not the real one
const txHash = exampleNFT.deployTransaction.hash
const txReceipt = await ethers.provider.waitForTransaction(txHash)
const contractAddress = txReceipt.contractAddress
console.log("Contract deployed to address:", contractAddress)
}

deployContract()
.then(() => process.exit(0))
.catch((error) => {
console.error(error);
process.exit(1);

});

Deploying the contract is done with the helper functions provided by the hardhat library.
First, we get the smart contract we created in the previous step with the provided
factory. Then we deploy it by calling the respective method and wait for the deployment
to be completed. There are a few more lines below the described code to get the correct
address in the testnet environment. Save the mjs file Execute the script with the
following command:
npx hardhat run scripts/deploy-contract.mjs --network PolygonMumbai

If everything is correct, you will see the following output:
Contract deployed to address: 0x{YOUR_CONTRACT_ADDRESS}

Note that you will need the printed contract address in the minting step. You can copy
and paste it into a separate text file and save it for later. This is necessary so the
minting script can call the minting method of that specific contract.

Minting the NFT on Exx

Minting the NFT now means calling the contract we just deployed to Exx.

Create a new file called mint-nft.mjs inside the scripts directory and copy this code from the
listing below:

const CONTRACT_ADDRESS = "0x00"
const META_DATA_URL = "ipfs://XX"

async function mintNFT(contractAddress, metaDataURL) {
const ExampleNFT = await ethers.getContractFactory("ExampleNFT")
const [owner] = await ethers.getSigners()
await ExampleNFT.attach(contractAddress).mintNFT(owner.address, metaDataURL)
console.log("NFT minted to: ", owner.address)

}

mintNFT(CONTRACT_ADDRESS, META_DATA_URL)
.then(() => process.exit(0))
.catch((error) => {

console.error(error);
process.exit(1);

});

Edit the first two lines to insert your contract address from the earlier deployment and the
metadata URL that was returned when storing the asset with NFT.Storage. The rest of the script
sets up the call to your smart contract with you as the to-be owner of the NFT and the pointer to
the metadata stored on IPFS.

Next, run the script:
npx hardhat run scripts/mint-nft.mjs --network PolygonMumbai

You can expect to see the following output:
NFT minted to: 0x{YOUR_WALLET_ADDRESS}

Looking for the sample code from this tutorial? You can find it in the polygon-nft.storage-demo
link Github repo.

https://github.com/itsPiyushMaheshwari/Polygon-nft.storage-demo

Heads Up!

You can always define complex logic that governs your NFT life cycle.

For more complex use cases, the successor standard ERC-1155 is a good place to start.
OpenZeppelin, the library we use in our tutorial offers a contracts wizard that helps create NFT
contracts.

https://ethereum.org/en/developers/docs/standards/tokens/erc-1155/
https://docs.openzeppelin.com/contracts/4.x/wizard

Community
The EXX community is a home of developers, designers, validators, investors and interesting
people all around the world trying to contribute to the growth and mainstream adoption of Web3.

Community Channels

