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Grid Expansion in Integrated Energy Systems
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Abstract—Battery storage is a flexible resource that can deliver
a wide range of grid services quickly and efficiently. This article
presents an investment planning model for battery storage, power
transmission grid, and natural gas network in a stochastic gas–
electric energy infrastructure. A bilevel stochastic optimization
program is developed with an upper level investor and two inter-
related lower level players. The investment decisions pertaining
to the battery storage facilities and the expansion of power and
gas systems are made by an independent investor anticipating the
clearing results of gas and electricity markets, modeled as con-
nected mixed-integer lower level programs. The nonconvexity of
power generation and the randomness of power and gas demands,
as well as renewable energy are considered in the formulation
of the lower level problems. To compute this stochastic bilevel
optimization with discrete decisions in both levels and interrelated
lower level programs, we develop an exact solution methodology
in a decomposed master-subproblem form. The application of the
method is illustrated on two test systems. Experimental results show
the modeling of gas and power grids’ interaction and the noncon-
vex nature of power production using the proposed methodology
significantly affects the optimal costs and expansion plans.

Index Terms—Battery storage, grid expansion planning, power
and gas systems, stochastic mixed-integer bilevel optimization.

NOMENCLATURE

A. Set and Index
Δ Set of network nodes, indexed by i.
Δ(i) Set of network nodes directly connected to

node i.
ΩE

H Set of existing branches, indexed by ij.
ΩC

H Set of candidate branches, indexed by ij.
Q Set of gas-fired units, indexed by q.
L Set of non-gas-fired units.
Q(i) Set of gas-fire units connected to node i.
L(i) Set of non-gas-fired units connected to node i.
K Set of gas network nodes, indexed by k, n.
K Set of existing pipelines, indexed by nk.
PL Set of candidate pipelines.
Λ Set of gas network pipelines.
l Index of a generator in the gas-fired or non-

gas-fired sets.
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A Set of battery storage ratings.
Ao Elements of set A, indexed by o ∈ O.
H Set of hours of a representative day in the

target year, indexed by h.
W Set of indexes of scenarios.
w Index of scenarios w ∈ W .

B. Parameters
Nh Number of hours in a representative day of

the target year.
σw Weight of each scenario.
Bij Series susceptance of line ij (p.u.).
Da

i Nodal real power demand (MW).
gRi Real power output of a renewable resource

(MW).
ηsi Battery efficiency (p.u.).
ηkq Heat rate ratio of each gas-fired unit at node

k (Mm3/MWh).
pmin
i , pmax

i Lower and upper bounds of active power
generation (MW).

pmax
ij Upper limit of real power flow on line ij

(MW).
fmax
kn Upper limit of gas flow of pipeline kn

(Mm3/h).
Gsmax

k Upper limit of gas supplied at each gas system
node (Mm3/h).

Gpmax
k Upper limit of gas demand at a gas system

node (Mm3/h).
cbi Capital cost of battery storage ($/MWh).
csk Marginal cost of gas supplied at a gas network

node ($/Mm3).
cpk Bid price of a gas-fired unit ($/M3).
Gd

k Fixed gas demand (Mm3/h).
ĉbi Annualized capital cost of battery storage

[$/MWh/yr].
c̃si , c

s
i Costs of battery operation from the per-

spective of the planner and market operator
($/MWh).

c̃gl , c
g
l Costs of power generation from the per-

spective of the planner and market operator
($/MWh).

c̃cl , c
c
l Costs of power curtailment from the perspec-

tive of planner and market operator ($/MWh).
C̃nl

l , Cnl
l Costs of no-load power generation from the

perspective of the planner and market opera-
tor ($/h).
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C̃u
l , C

u
l Costs of start-up from the perspective of the

planner and market operator ($).
C̃d

l , C
d
l Costs of shutdown from the perspective of the

planner and market operator ($).
k̂ij Annualized capital cost of transmission line

ij ($/yr).
kij Capital cost of transmission line ij ($).
t̂nk Annualized capital cost of pipeline nk ($/yr).
tnk Capital cost of pipeline nk ($).
IM Expansion budget ($).

C. Variables
θi Nodal voltage angle (rad).
ri Nodal active power curtailment (MW).
pl Active power output of a production unit

(MW).
pij Real power flow on line ij (MW).
Xs

i Battery storage capacity (discrete-sized)
(MWh).

esi Energy level of the battery storage (MWh).
pch
i /p

dis
i Charge/discharge power of the battery stor-

age (MW).
zi Binary variable used for modeling the

charge/discharge operating mode of the bat-
tery.

Gs
k Gas supplied at a gas network node (Mm3/h).

Gp
k Gas demand of a gas-fired unit at a gas net-

work node (Mm3/h).
fnk Gas flow in each pipeline (M3/h).
vl Binary variables used for modeling commit-

ment status of each generator.
αio Binary variable used for selection of each

element Ao ∈ A.
ul Binary variables used for modeling start-up

of each generator.
sl Binary variables used for modeling shutdown

of each generator.
xij Investment status of transmission line ij.
ynk Investment status of pipeline line nk.

I. INTRODUCTION

A. Background and Motivations

W ITH battery storage technology becoming more cost-
effective, and given its flexibility, low standby cost, and

fast response time, the recent trend in some power systems is
to deploy commercial-scale battery storage facilities to comple-
ment the variability of renewable resources, like wind and solar
power [1], [2]. According to [3], about 90% of large-scale battery
storage capacity in the U.S. is installed in the regions covered
by five of the ISOs or regional transmission organizations.

Beside renewables, power systems operate conventional tech-
nologies, like gas-fired units whose share has increased from
37% in 2019 to 39% in 2020, according to [4]. With the growing
reliance on gas-fired units, the coupling between the natural
gas and electricity infrastructures becomes intensified, which
would affect the supply and demand balance of both systems and

presents significant challenges for the operation and planning of
them.

The current trend of using battery storage and the increasing
share of gas-fired units in power grids indicate a necessity
for utilities to produce unified expansion plans in which the
interdependency of these energy systems and the deployment of
battery storage, as a fast-acting dispatchable resource, are ob-
served. This research aims to address battery storage investment
with coordinated expansion planning of power and natural gas
systems in a stochastic environment.

B. Literature Review

Acknowledging the necessity for coordinating electricity and
natural gas systems, the technical literature on co-investment
planning of power and gas systems offers us several approaches.
Mixed-integer linear programming (MILP) [5], [6] and second-
order cone programming techniques [7] have been applied to
solve joint expansion planning problem of natural gas and
electricity systems. They used a deterministic approach for
computational tractability. To handle uncertainties, two-stage
robust optimization [8], [9] and stochastic programming [10],
[11] were proposed and solved using decomposition algorithms.
Chen et al. [12] studied investment equilibria in electricity
and gas markets using bilevel optimization. The investment
decisions on gas storage facilities, power lines, and pipelines
are made by the independent investor considering the clearing
outcomes of connected gas and electricity markets modeled as
coupled mixed-integer lower level programs. Chaudry et al.
[13] proposed a combined gas and electricity network plan-
ning approach for making investment decisions on power units,
power lines, pipelines, compressors, and gas-storage facilities.
Cheng et al. [14] used a decentralized scheme for integrated
energy system expansion planning considering carbon-emission
constraints. The aforementioned works [5]–[14] developed ex-
pansion models for combined gas–electric systems, but do not
consider the battery storage facility in the problem formulation.
Ordoudis et al. [15] discussed the benefits of coordination be-
tween electricity and natural gas systems, where they compare
the results obtained from decoupled and integrated market clear-
ing models. Along this, decoupled market clearing models, to
obtain the maximum social welfare for economic analysis of
coordinated power and gas systems, are developed in [16], [17],
[18], and [19].

Extensive researches can be also found on the topic of joint
optimization of transmission system and battery storage. Specif-
ically, Zhang et al. [20] proposed a multilevel model, which
decides on the storage allocation in the upper level and the
expansion of transmission system is decided by the middle level
problem. In [21], a single level formulation is developed with
a linear approximation of transmission losses in the objective
function. A bilevel program is developed in [22] for allocating
storage units in a distribution system integrated with transmis-
sion network. The upper level represents the distribution system
and the lower level accounts for the transmission network.
A two-stage stochastic model for storage sizing is presented
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in [23], assuming a model predictive control scheme and in-
accurate forecast of renewable resources. Pandžić et al. [24]
proposed a three-stage planning scheme wherein the optimal
location, rating, and operating of the storage are sequentially
determined. Huang et al. [25] presented a comparative analysis
on two joint market mechanisms on storage investment and
operation: a socially optimal investment model with centralized
operation and a profit-maximizing investment one with dereg-
ulated operation. Wogrin et al. [26], [27] formulated a storage
planning model from a social planner perspective that minimizes
the overall system operation and investment cost by selecting
the site and/or size of the storage facilities. The investment
problem faced by a strategic planner, based on a multilevel math-
ematical programming, is addressed in [28], wherein investment
decisions are made by the upper level decision maker and the
operational ones by a centralized market mechanism. Haghighat
and Zeng [29] developed a bilevel stochastic optimization model
for transmission expansion planning considering integrated gas-
power grids in the lower level problem using MILP formulation.
The above-mentioned works [20]–[29] consider the allocation
of battery storage but ignore natural gas system and develop
optimization models, in which network expansion is performed
only for the power system and/or the interaction with the gas
system is not accounted for.

We note that in the aforementioned research studies, joint in-
vestment planning of battery storage, power transmission lines,
and gas pipelines in a connected and separately operated gas–
electric system under uncertainty using multilevel optimization
is not presented yet. Developing a bilevel co-investment frame-
work, which supports interlinked optimization and decision-
making tasks for a coordinated but independently cleared gas–
electric market with uncertain demands and discrete decisions
in both levels, and an exact solution method that computes
the optimal decision for the stochastic problem, constitute the
primary objectives of this article.

C. Objectives and Contributions

Different from the present literature, our approach considers
a more complex situation and develops a stochastic bilevel
optimization program, which is suitable for co-optimization
of battery storage capacity, power transmission network, and
natural gas grid in a coordinated gas-power system. Given that
these energy systems interact hierarchically with little centrally
controlled operations, and that the objectives of the control-
ling/planning authority can be different from those of power
and gas markets’ operators, bilevel optimization provides a
more relevant and compelling tool in such a context. Moreover,
because of uncertain factors that affect both markets and the
discrete and interrelated decisions of the lower level players,
the resulting problem is a complex stochastic optimization with
mixed-integer programs (MIPs) in the top and bottom levels.
Our contributions thus include the following.

1) We co-optimize storage investment and expansion plan-
ning of electricity and natural gas systems using multilevel
programming with a probabilistic description of uncer-
tain power and gas demands and renewable generation.

Unlike the growing literature on multilevel programming
where operational nonconvexities associated with genera-
tion units and binary commitment variables are often disre-
garded in market clearing, our approach exactly considers
these critical factors and develops a stochastic multilevel
optimization with interlinked linear MIP programs in the
lower levels. This feature helps us accurately understand
the interactions between these energy systems and assess
the impacts of those critical factors on the planning results.
To our best knowledge, similar complex stochastic bilevel
model has not appeared or been solved exactly in the
literature yet.

2) We present a solution method based on reformulation-
and-decomposition strategy, which first reformulates this
stochastic multilevel optimization with connected lower
level MIP programs as a regular bilevel formulation. Sub-
sequently, we develop and customize the column-and-
constraint-generation algorithm to compute this stochas-
tic problem in an exact fashion. The proposed solution
methodology paves the way for efficient computing unre-
solved stochastic bilevel MIP optimizations with guaran-
teed convergence to the global optimality. The application
is illustrated and discussed on two test systems.

The rest of this article is organized as follows. In Section
II, the notation, the modeling assumptions, and the proposed
multilevel optimization formulation are described. In Section III,
the solution methodology involving formulations of the master
problem and subproblems as well as the computing algorithm
are outlined. In Section IV, experimental results are discussed.
Section V concludes this article.

II. PROBLEM STATEMENT

In this section we present the optimization problem of the
planning model. The assumptions are introduced first.

A. Market Structure and Assumptions

In the proposed co-investment model, we assume a multilevel
structure. The upper level decision maker, which could be a pri-
vate planner or a regional authority, minimizes the construction
and operation costs constrained by two lower level problems.
The lower level consists of interrelated natural gas and electricity
markets that clear independently of one another and have com-
plete information interchange. Indeed, the proposed structure
for these energy markets simulates the current decoupled setup
between electricity and natural gas markets. Note that they
clear independently and mainly interact through the operation
of gas-fired production units, meaning natural gas is an input
fuel for some gas-fired generation units.

To manage the trade-off between accuracy and solvability, we
make several key assumptions in our model. First, the investment
decisions are derived for a single target year and optimization
is carried out over a number of representative hours/days in the
target year. Second, natural gas and power demands are assumed
to be uncertain. The stochastic nature of demands is described
through finite sets of scenarios. Third, the operating cost of re-
newable generation is zero and its uncertainty is described using
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a scenario-based method, similar to the modeling of uncertain
demand. Fourth, we assume the two markets clear simultane-
ously, which facilitates the coordination and integration of these
systems and improves efficiency of energy trade [30]. Fifth, to
clear the power market, we use a mixed-integer linear power
flow formulation, which is consistent with current practice in
wholesale electricity markets. Moreover, we employ a linear
steady-state gas system model where gas flows of pipelines are
directly controllable. The gas system model that we assume is
widely used in power system operating and planning studies
(see [8], [10], [14], [16], [30], and [31] to name a few). A detailed
mathematical description of modified gas system is provided in
the subsequent section.

B. Stochastic and Multilevel Coordinated Investment Planning

The market-based planning problem is formulated as

min
∑
ij∈ΩL

k̂ijxij +
∑

kn∈PL

t̂knykn +
∑
i∈Δ

ĉbiX
s
i

+ 365× 24

Nh

∑
w∈W

σw

( ∑
i∈Δ,h∈H

[
c̃si (p

dis
ihw/η

s
i

+pch
ihwη

s
i )
]
+

∑
l∈Q(i)∪L(i)

[
c̃gl plhw + C̃nl

l vlhw

+C̃u
l ulhw + C̃d

l slhw

]
+
∑
i∈Δ

c̃cirihw

)
(1a)

s.t. Xs
i =

∑
o∈O

αioAo,
∑
o∈O

αio ≤ 1

∀i ∈ Δ, o ∈ O, Ao ∈ A (1b)∑
ij∈ΩL

kijxij +
∑

kn∈PL

tknykn +
∑
i∈Δ

cbiX
s
i ≤ IM (1c)

αio, ykn, xij ∈ {0, 1} ∀i, o, kn ∈ PL, ij ∈ ΩL (1d)

pl,p
dis
i ,pch

i ,vl,ul, sl ∈ argmin

{

∑
h∈H

(∑
i∈Δ

[
csi (p

dis
ihw/η

s
i + pch

ihwη
s
i )
]

+
∑

l∈Q(i)∪L(i)

[
cgl plhw + Cnl

l vlhw + Cu
l ulhw

+Cd
l slhw

]
+
∑
i∈Δ

ccirihw

)
(1e)

∑
l∈L(i)

plhw +
∑

q∈Q(i)

pqhw + rihw − pch
ihw + pdis

ihw

+
∑

j∈Δ(i)

pjihw −
∑

j∈Δ(i)

pijhw = Da
ihw − gRihw ∀i ∈ Δ, h

(1f)∣∣pijhw = Bij(θihw − θjhw)
∣∣≤ pmax

ij ∀ij ∈ ΩE , h ∈ H (1g)

∣∣pijhw = xijBij(θihw − θjhw)
∣∣≤ pmax

ij ∀ij ∈ ΩL, h ∈ H (1h)

vlhwp
min
l ≤ plhw ≤ vlhwp

max
l ∀l ∈ Q ∪ L, h ∈ H (1i)

vlhw − vl,h−1,w = ulhw − slhw ∀l ∈ Q ∪ L, h ∈ H (1j)

0 ≤ 1/ηsi p
dis
ihw ≤ zihwX

s
i ∀i ∈ Δ, h ∈ H (1k)

0 ≤ ηsi p
ch
ihw ≤ (1− zihw)X

s
i , ∀i ∈ Δ, h ∈ H (1l)

esihw = esi,h−1,w + pch
ihwη

s
i − pdis

ihw/η
s
i ∀i ∈ Δ, h ∈ H (1m)

0 ≤ esihw ≤ Xs
i ∀i ∈ Δ, h ∈ H (1n)

0 ≤ rihw ≤ Da
ihw ∀i ∈ Δ, h ∈ H (1o)

Gp
khw = ηkqpqhw ∀k ∈ K, q ∈ Q, h ∈ H (1p)

θihw = 0 i = ref., h ∈ H (1q)

vlhw, ulhw, slhw, zihw ∈ {0, 1}

∀l ∈ Q ∪ L, i ∈ Δ, h ∈ H

}
∀w ∈ W (1r)

Gp
khw ∈ argmax

{ ∑
h∈H,k∈K

(cpkG
p
khw − cskG

s
khw) (1s)

s.t. Gs
khw −Gp

khw +
∑

n∈K(n)

fnkhw −
∑

n∈K(n)

fknhw =

Gd
khw : λkhw ∀k ∈ K, h ∈ H (1t)∣∣fknhw∣∣≤ fmax

kn : (μfE ,l
knhw, μ

fE ,u
knhw) ∀kn ∈ PE , h (1u)∣∣fknhw∣∣≤ yknf

max
kn : (μfL,l

knhw, μ
fL,u
knhw) ∀kn ∈ PL, h (1v)

Gsmin
k ≤ Gs

khw ≤ Gsmax
k : (μs,l

khw, μ
s,u
khw) ∀k ∈ K, h (1w)

Gpmin
k ≤ Gp

khw ≤ Gpmax
k : (μp,l

khw, μ
p,u
khw) ∀k ∈ K, h}

∀w ∈ W. (1x)

The first two terms of (1a) are the annualized costs of build-
ing transmission line, gas pipelines, and storage facilities. The
rest of the terms represent the operating costs of convectional
generators and storage facilities, as well as the load curtailment
cost. In objective function (1a), investment variable Xs

i denotes
the storage capacity in MWh. We assume that this capacity is
converted to charge/discharge rate (i.e., power capacity) using a
fixed energy-to-power ratio set to 1 hour here, for each battery
storage.

The running cost of conventional production units comprises
fixed and variable costs. The fixed cost terms consist of the
costs of no-load operation, start-up, and shutdown included
in the objective with binary variables vlhw, ulhw, and slhw,
respectively. It is assumed that the storage capacity variable Xs

i

is discrete-sized, which is enforced by (1b) where set A defines
the available discrete ratings. Budget constraint is given by (1c),
and constraint (1d) declares binary variables of the top problem.

There are two interrelated lower level programs. The first one,
given in (1e)–(1r), represents the power market clearing, and
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the gas market is modeled by (1s)–(1x). The objective function
(1e) is analogous to that in (1a). As mentioned earlier, the
transmission system constraints are represented using a standard
dc power flow model in (1f)–(1h) for new and existing transmis-
sion lines. The output limits of generating units are defined by
(1i) where upper and lower bounds are multiplied by a binary
variable representing the on/off status of the unit. The governing
equations of the storage operation, including charge/discharge
power limits (1k) and (1l), energy balance (1m), and energy limit
(1n), are provided in this formulation. To prevent simultaneous
charging and discharging of stored energy, binary variable zihw
is introduced in (1k) and (1l). Load curtailment limit is enforced
by (1o). Observe that the the right-hand sides of (1k) and (1l)
involve the product of a (lower level) binary and an (upper level)
integer variable. The relationship between the power production
and gas consumption of gas-fired units is defined by (1p) through
its heat-rate efficiency. We assume a linear relationship for
simplicity. Constraint (1q) defines the reference voltage angles,
and (1r) declares binary variables.

To model gas network, we assume that the gas market operator
collects offers and bids from gas suppliers (wells) and consumers
together with their technical constraints. Here, we consider
fixed demands and gas-fired units as the main gas consumers,
where only bids from gas-fired units are considered. The gas
market operator maximizes the social welfare of suppliers and
consumers stated by (1s). The gas balance constraint is given by
(1t). Bounds on the flow of existing and new pipelines are stated
in (1u) and (1v). Limits on the consumption levels of gas-fired
units and production of gas suppliers (wells) are modeled in (1w)
and (1x). As previously indicated, we use a linear transportation
gas flow model, where nodal pressure variables are omitted and
the gas flow in each pipeline is directly controllable assuming
a maximum flow limit. This linear model is widely used in
planning studies and economic analysis problems of gas–electric
systems (for instance, refer to [8], [10], [14], [16], [30], and [31]).
With this linear format of gas flow constraints, we can develop a
computable bilevel optimization model with discrete decisions
being in the top problem and in only one of the bottom level prob-
lems [i.e., the power market clearing problem (1e)–(1r)]. Such
modeling approach allows us to replace the gas market clearing
problem (1s)–(1x) with its primal–dual equivalent counterpart,
which leads to an augmented linear MIP program in the lower
level. We mention that when a detailed MILP gas flow model
with practical factors of a real system (e.g., linearized Weymouth
equations) is employed, the bilevel optimization model will
have interrelated lower level MIP programs, which currently
lacks of well-established results to ensure the existence and to
further capture the equilibrium between them. Hence, gas flow
model is modified here into a simpler linear one for tractability
reasons. Certainly, an alternative approach is to use a linear
power market clearing with an MILP model of gas system, and
apply a similar primal–dual transformation to the power market
problem (1e)–(1r) to build an alternative mixed-integer bilevel
formulation. Since both approaches are fundamentally similar,
the latter one is not considered in this article.

In optimization model (1), the top problem is constrained
by two interrelated lower level stochastic programs. That is,

Fig. 1. Structure of the proposed model.

the mixed-integer linear program (1e)–(1r), which is connected
to the linear program (1s)–(1x) through (1p). Observe that
optimization problem (1) is a stochastic program, in which the
uncertainty of power and gas demands as well as renewable
generation is described through a finite set of scenarios indexed
by w ∈ W .

In Fig. 1, the proposed framework and information exchange
between the top and bottom level problems are depicted.

Remark 1: The nonlinear inequality (1h) can be reformulated
as a linear one by

∣∣pijhw = Bij(θihw − θjhw)
∣∣≤ (1− xij)M ,

where M is a big positive constant.

III. SOLUTION METHODOLOGY

Given the interdependency of the lower level problems and
the mixed-integer nature of power market decisions, this prob-
lem cannot be computed in a straightforward fashion unless
some preliminary reformulations for algorithmic development
are applied, as described next. Therefore, we first derive the
primal–dual formulation of the gas market model (1s)–(1x), and
place it as a set of constraints into the power market problem.
This reformulation will produce a single lower level problem,
which is mixed-integer linear. The primal–dual counterpart of
the gas market model, for every scenario w ∈ W , reads as

[Constraints(1t)− (1x)] ∀k ∈ K, h ∈ H (2a)

− λkhw + μp,u
khw − μp,l

khw − cpk = 0 ∀k ∈ K, h ∈ H (2b)

λkhw + μs,u
khw − μs,l

khw + csk = 0 ∀k ∈ K, h ∈ H (2c)

μfE ,u
knhw − μfE ,l

knhw + λkhw − λnhw = 0

∀k, n ∈ K : kn ∈ PE , h ∈ H (2d)

μfL,u
knhw − μfL,l

knhw + λkhw − λnhw = 0

∀k, n ∈ K : kn ∈ PL, h ∈ H (2e)

∑
h∈H,k∈K

(cgkG
p
khw − cskG

s
khw) =

∑
h∈H,k∈K

(
λkhwG

d
khw

Authorized licensed use limited to: UNIVERSITY OF WESTERN ONTARIO. Downloaded on November 20,2022 at 08:03:25 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE SYSTEMS JOURNAL

+Gpmax
k μp,u

khw −Gpmin
k μp,l

khw +Gsmax
k μs,u

khw +Gsmin
k μs,l

khw

)

+
∑

kn∈PE

fmax
kn

(
μfE ,u
knhw + μfE ,l

knhw

)

+
∑

kn∈PL

yknf
max
kn

(
μfL,u
knhw + μfL,l

knhw

)
(2f)

where (2a) is the primal constraint of the gas market clear-
ing, (2b)–(2e) are dual constraints, and (2f) is the primal–dual
constraint. Next, we augment the lower power market clearing
problem (1e)–(1r) with this equivalent primal–dual formulation
(2a)–(2f) to form the stochastic optimization as follows:

min (1a) (3a)

s.t. [Constraints (1b)–(1d)] (3b)

min (1e) (3c)

s.t. [Constraints (1f)–(1r)] (3d)

[Constraints (2a)–(2f)] . (3e)

Bilevel optimization (3) consists of the following.
1) The constraints of the original upper level investment

problem (3b).
2) The constraints of the lower level power market clearing

problem (3c) and (3d).
3) The equivalent counterpart of gas market clearing problem

(3e), which is written as a set of constraints for the original
power market clearing problem.

Observe that problem (3) is an instance of stochastic bilevel
optimization with mixed-integer linear programs in both upper
and lower levels. Given that the conventional reformulation
methods that employ Karush–Kuhn–Tucker (KKT) conditions
or strong duality (to replace the lower level problem with its
equivalent optimality conditions) are not applicable to problem
(3), we use and extend the reformulation-decomposition strat-
egy [32] with column-and-constraint-generation method [33]
being the decomposition algorithm, to compute it in an iterative
fashion. The complete solution procedure partitions (3) to a mas-
ter problem and two subproblems, and solves them iteratively,
as described next.

A. Subproblem Formulation

The first subproblem, i.e., SP1
w, computes an upper bound

of the objective function. It is written below for every scenario
w ∈ W (the dual variables are indicated in (1s)-(1x) before each
constraint after a colon)

SP1
w : Γsp

w = min
YL

∑
h∈H

(∑
i∈Δ

[
csi
(
ηsi p

ch
ihw + pdis

ihw/η
s
i

)

+ccirihw] +
∑

l∈Q(i)∪L(i)

[
cgl plhw + Cnl

l vlhw

+Cu
l ulhw + Cd

l slhw
])

(4a)

s.t. [Constraints (1f)–(1r)] (4b)

[Constraints (2a)–(2f)] (4c)

where we denote the vector of lower level variables
by YL = [λ, μf , μs, μp, Gs, Gp, f, p, r, pdis, pch, θ, v, z].
Subproblem (4) is a standard stochastic MILP problem, which
can be efficiently computed for every scenario. It provides an
optimal solution of the lower level model (3c)–(3e) for the
investment decision (x∗

ij , y
∗
kn, X

s∗
i ). However, it might have

multiple solutions. The second subproblem, i.e., SP2, derives
one that is in favor of the upper level model, as follows:

SP2 : bΓ
sp

= min [(1a)] (5a)

s.t. [Constraints (4b)–(4c)] ∀w ∈ W (5b)

∑
h∈H

(∑
i∈Δ

[
csi
(
ηsi p

ch
ihw + pdis

ihwη
s
i

)
+ ccirihw

]

+
∑

l∈Q(i)∪L(i)

[
cgl plhw + Cnl

l vlhw + Cu
l ulhw +Cd

l slhw
])

≤ Γsp,∗
w ∀w ∈ W. (5c)

Observe that SP2 is a regular stochastic MILP problem.

B. Master Problem

The master problem computes a lower bound estimate of
the original objective function (1a) iteratively and dynamically
improves it by adding new variables and constraints to the
master problem until convergence is reached. Specifically, it is
constructed by the following.

1) Duplicating the lower level variables YL and constraints
(3d)–(3e) in the upper level problem. That is, constraints
in (6c), which are indicated with superscript “∼” meaning
all variables involved in these constraints are duplicated
variables and indexed by ν.

2) Replacing the lower level problem (3c)–(3e), in iteration
ν, of fixed realizations of binary variables z

∗,(ν)
ihw , v

∗,(ν)
lhw ,

u
∗,(ν)
lhw , and s∗,(ν)lhw by its KKT conditions.That is, constraints

in (6d), which are linearized with the help of Big-M
method.

3) Augmenting constraint in (6e), to enforce master problem
MP to be equivalent to the original problem (1). Again,
superscript “∼” on the right-hand side of (6e) means
variables in this constraint are duplicated ones.

Let us denote by XU the vector of the upper level variables.
The master problem is written in the compact form as follows:

MP : Γmp = min
XU

(1a) (6a)

s.t. [Constraints (1b)–(1d)] (6b)

[Constraints e(3d)–e(3e)] (6c)

KKT of [Constraints (3c)–(3e)] (6d)

(1e) ≤ e(1e). (6e)
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Algorithm for solving stochastic optimization (1)

1: Step 1. Set LB = 0, UB = ∞, and τ = 0.
2: Step 2. Solve MP. Report optimal X∗

U and update
LB = max{Γmp,LB}.

3: Step 3. Given optimal X∗
U , solve SP1

w for every w and
report optimal Γsp,∗

w .
4: Step 4. Given Γsp,∗

w , solve SP2 and report optimal
z
∗,(τ)
i , v

∗,(τ)
l , u∗,(τ)

l , s∗,(τ)l , Gp∗,(τ)
k , and bΓ

sp,∗
. Update

UB = min{bΓsp,∗
,UB}.

5: Step 5. If UB − LB ≤ ε, stop with a solution
associated with UB. Otherwise, go to step 6

6: Step 6. Let τ = τ + 1, create variables and constraints
indexed by ν, and add them to MP. Go back to step 2.

We remark that the bilinear terms that appear in the master
problem are product of binary and continuous variables, which
can be readily linearized to convert MP to a standard stochastic
MILP program.

Let LB and UB be the lower and upper bounds, respectively,
τ be the iteration index, and ε be the optimality tolerance. The
algorithm steps are sketched as follows.

This algorithm dynamically provides stronger upper bounds
(from subproblems) and lower bounds (from the master prob-
lem) and, in each iteration, adds new variables and constraints
to the master problem until the difference between bounds is
not larger than optimality tolerance ε. The mathematical proof
of finite convergence of this algorithm to the optimal value is
provided in [32] (see also [34] for a recent application).

IV. EXPERIMENTAL RESULTS

In this section, we illustrate the proposed method on two test
systems assuming that the annual load growth is 5% and the
interest rate is 10% per annum. The uncertainties of electricity
and gas demand as well as the renewable generation (treated as
negative demand) are considered using a discrete scenario ap-
proach. For simplicity and to introduces nontrivial uncertainties
into the model, it is assumed that electric and gas loads can differ
by up to ±20% relative to the assumed baseline level.

Experiments were done by a MATLAB platform in Gurobi
solver on a laptop computer with Intel Core (TM) i7-2670QM
CPU (2.2 GHz) and 8 GB memory. The MIP optimality gap is
set to 0.0001.

A. Example System

The first test system is composed of a six-node power system
and a four-node gas network, as shown in Fig. 2. The power sys-
tem has four existing generators and three existing transmission
lines. We consider ten candidate transmission lines involving
seven new lines 2–3, 2–4, 3–4, 3–6, 4–6, and 5–6 and three
existing lines 1–2, 1–3, and 5–4 (see Fig. 2). The storage can be
installed at each bus with discrete ratings of {50, 75, 100, 125,
150} MWh. The gas network has two gas suppliers (wells) and
five candidate pipelines. The gas-fired units at Nodes 5 and 6
are connected to gas network Nodes 1 and 3, respectively. The

Fig. 2. Example system: 6- and 4-node power and gas grids.

network is planned for target year 10. The investment costs of
transmission lines and pipelines are in the range of [0.84, 2.1]
M$ and [1.5, 1.8] M$, respectively. The battery investment and
operating costs are 100 $/kWh and 0.5 $/MWh, respectively.
Load shedding is penalized at a price of 500 $/MWh. The rest
parameters of this gas–electric system is provided in the link.1

To reduce the problem size and improve computing speed and
solution accuracy, we considered three representative days in the
target year with a total duration of 72 h. Hourly loading factors
for each day were chosen from [35]. They correspond to three
different seasons and week days. To model the uncertainty of
the gas and power demands, we assumed that nodal demands
exhibit uniform probability distributions, and can deviate by
±20% from the nominal forecast. In doing so, 50 equiprobable
scenarios were created to account for unpredictable variations
of gas and power demands in the target year. The investment
budget is 100 M$. The following six cases are studied.

• Case 1: This is the base stochastic case involving 50
equiprobable scenarios. We assume that nodal natural gas
and power demands exhibit uniform probability distribu-
tions, and can deviate by ±20% from baseline values.

• Case 2: The offer parameters of the two gas suppliers
change by ±12.5% with respect to the base case.

• Case 3: A 60-MW wind farm is placed at node 3. As
indicated earlier, marginal generation cost of renewable
generation is zero and it is treated as negative demand.
The uncertainty of wind generation is handled similar to
demand uncertainty using a finite set of scenarios.

• Case 4: The gas network is ignored assuming gas-fired units
will supply power according to their operational capacities.

• Case 5: A simplified power flow model, which is frequently
used in investment planning studies, is employed by lifting
the restrictions on simultaneous charging/discharging of
storage devices and ignoring the nonconvex cost compo-
nents of the production units. Observe that binary variables
vihw, uihw, sihw, and zihw are eliminated from the first
lower level program rendering a linear market clearing
problem.

• Case 6: The investment budget assumed in case 1 decreases
to 40 M$. The rest parameters remain unchanged.

The optimal investment decisions involving annual costs,
installed power lines, and gas pipelines, as well as battery storage
facilities are given in Table I. The outcomes of these case studies

1zenodo.org/record/5483014
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TABLE I
OPTIMAL PLAN OF EXAMPLE SYSTEM WITH 50 SCENARIOS

are compared to Case 1, wherein five new transmission lines
and three pipelines are installed in the electric and gas systems,
respectively. In addition, three storage devices are added to the
power grid. The required budget is nearly equal to 85 M$with
an objective value of 3632 M$. In Case 2, offers of gas suppliers
change by ±12.5%, which affect the investment decisions on
both energy systems. It is seen that the expansion plan of both
network changes due to changes in the gas market clearing
results, which affect the dispatch results of the gas-fired units in
the power market. The storage capacity increases by 125 MWh,
which reduces the production cost as well as the overall planning
cost. In Case 3, the impact of adding a wind farm at node 3
is analyzed. Observe that it increases the overall investment
costs of all assets while the overall planning cost decreases.
Detailed experimental results show that the expansion decisions
will depend on the location of the wind generation. However, in
all cases studied, it decreases the planning cost due to reduction
of the net system load. In Case 4, the gas system is not modeled,
giving rise to a higher investment in the transmission system and
a lower investment in storage capacity. We note that by ignoring
the gas system, gas-fired units will generate according to the op-
erational capacities with no fuel and dispatch restrictions being
imposed on their operation by the gas system. Consequently, the
production and the total planning costs are reduced because the
share of gas-fired units in supplying the system demand increases
owing to lower start-up and no-load costs.

The least expensive investment plan is achieved in Case 5, in
which a simplified power flow model is used. It is clearly seen
that no storage facility is installed, and the objective function
and the required investment budget decrease by 22% and 15%,
respectively. Note that the expansion plan of the gas network
also differs from that obtained in Case 1. It is worth mentioning
that the expansion plan achieved in this case represents an
approximate (more exactly, inaccurate) one as it was unreal-
istically assumed that the nonconvex cost components of power
production are zero and the storage devices can simultaneously
charge and discharge. These simplifications represent a cheaper
investment and expansion plan. Finally, in Case 6, the impact of
reducing the investment budget to 40 M$ is analyzed. This case
gives the most expensive objective and planning costs. Observe

Fig. 3. Average energy level of batteries in the example system.

that the production cost reaches its highest amount due to the
fact that costlier units must supply the system loads.

Fig. 3 shows the average energy levels (i.e., esihω) of all
batteries installed in the example power system for the seven
cases. Note that the energy levels of different storage devices
are aggregated over the 50 scenarios for a compact presentation.
Cases 5 and 6 are not shown in the figure because no storage is
invested in these two cases. For the rest cases, it is seen that
the highest energy level is associated with Case 2, which is
consistent with the results of battery storage investment in Table I
where the largest storage investment and operation take place.
Moreover, the second largest energy level (and hence, storage
dispatch) corresponds to Case 3 for the same reason, as given in
Table I.

Results from these case studies and test system clearly show
that modeling critical factors in an integrated gas–electric system
plays an instrumental role in joint co-optimization of power and
gas systems, which are considered in the proposed formulation
and solution methodology.
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TABLE II
DEMAND SCALING FACTORS

B. 118-Node System

The second test system is a modified IEEE 118-node system.
There are nine gas-fired generators in this system supplied from
a 20-node natural gas system. The gas network is essentially
the Belgium natural gas system, frequently used in expansion
planning studies. The candidate power lines and gas pipelines
considered are similar to the existing ones in both systems,
meaning there are 138 transmission lines and 25 pipelines that
can be installed. The investment cost of transmission line is
assumed to be 200 K$/Km, and the cost of gas pipeline is pro-
portionate to its capacity. Analogous to the previous test system,
the battery investment and operating costs are 100 $/kWh and
0.5 $/MWh, respectively. Load shedding is penalized at a price of
500 $/MWh. The complete list of gas–electric parameters and
their values are provided in the link.2

The transmission capacity of electrical branches was de-
creased by 60%. The planning is carried out for target year 10.
For simplicity, each day of the target year was modeled by a
representative 24-h day. The hourly load data and the parameters
of the gas system were adopted from [36]. Load shedding is
penalized at 1000 $/MWh. For simplicity, we only consider the
variable and the no-load costs of power generation. The battery
storage is available at discrete ratings as given in the previous test
system. To describe uncertain natural gas and power demands,
we created eight scenarios with the scaling factors given in
Table II. They are applied to the gas and power demands. The
investment budget is 220 M$. Seven cases are studied next.

• Case 1: This is the base stochastic case with eight equiprob-
able scenarios. Scaling factors for natural gas and power
demands are given in Table II.

• Case 2: The gas system is not modeled.
• Case 3: The capacity of each gas pipeline decreases by 20%

comparing with the original network.
• Case 4: The weights (probability) of the scenarios change to
{0.15, 0.25, 0.08, 0.1, 0.09, 0.2, 0.07, 0.06}. Note that the
average scenario weight is equal to 0.125, which is identical
with that of the base case.

• Case 5: A simplified power market clearing is used by
eliminating all binary variables from the model.

• Case 6: The base case budget is reduced by 20%.
• Case 7: The load shedding is priced at 100 $/MWh.
The optimal stochastic results including costs and investment

decisions on transmission lines, pipelines, and storage capacity
are given in Table III. These results are compared to Case 1
representing the base case. In Case 1, the power and gas networks
are expanded by installing 15 power lines and ten pipelines.
The invested storage capacity is 625 MWh (at 7 nodes), and

2zenodo.org/record/5403292

Fig. 4. Average energy level of batteries in IEEE 118-bus system.

the required investment budget is 164 M$. In Case 2, gas
system is not modeled. The overall investment in the power
system (involving power lines and storage capacity) and the
production cost decreases. As expected, the required budget and
the objective function are reduced compared to the base case
and a different power system expansion plan is achieved. In
Case 3, the investment cost of natural gas pipelines as well as the
required budget increase owing to the reduced pipeline capacity.
Moreover, the storage capacity and, consequently, its operating
cost approximately double. A different expansion plan with
larger indices values given in Table III is attained in Case 4 when
the scenario weights change. Note that the average scenario
weights (probability) of Case 4 and base case are identical, but
scenarios with higher loading levels are given higher priorities
(weights). Consequently, the allocation and expansion costs in
Case 4 nearly increase by 20% (equal to percent reduction in
gas pipeline capacity). Note that a different expansion plan
for both systems is obtained compared to the base case. The
role of modeling power flow details in investment results is
assessed in Case 5, where a simplified power market model is
applied. It is clearly seen that the smallest numbers of storage
and transmission lines are installed in this case while the gas
system expansion remains almost the same as that in Case 1.
The least expensive investment, and hence an approximate plan,
is achieved in this case. In Case 6, we reduce the budget, which
mostly affects the investment decisions in the power system
where the production cost, and thus, the objective function value
increase due to budget limitation. In Case 7, the impact of
decreasing the price of load shedding is investigated where the
price is reduced to allow for more load curtailment. Detailed
results show that some load shedding takes place at two system
nodes in the second scenario (with the highest loading factor
given in Table II). The required investment and budget are
reduced but the overall objective function slightly increases in
this case.

Fig. 4 shows the average energy levels of batteries installed in
the 118-bus system for the seven cases given in Table IV. For a
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TABLE III
OPTIMAL STOCHASTIC INVESTMENT PLAN OF IEEE 118-BUS SYSTEM

TABLE IV
MODEL STATISTICS AND COMPUTATIONAL PERFORMANCE

compact presentation, energy levels of different storage devices
are aggregated over the scenarios. Clearly and as previously
observed, Case 3 yields the largest energy level, which is also
given in Table IV where the largest storage investment and
operating takes place. Note that in Case 3, the capacity of the
gas system is reduced compared to the base case, which restricts
the production of gas-fired units and consequently increases the
dispatch of storage facilities. Finally, in Fig. 5, we compare the
investment decisions with respect to the required budget versus
the total production cost. In this figure, the ratio of production
cost to the investment budget for each case is calculated and
depicted. It is seen that Case 3 provides the most appropriate
investment decision, while Case 2 is a very expensive plan in so
far as the production cost is concerned.

The statistics of the model and its computational performance
are given in Table IV. As expected, the problem size and the
computing time markedly increase with the number of scenarios
while the iteration number of the solution method remains
unchanged.

Fig. 5. Production cost to investment budget in IEEE 118-bus system.

V. CONCLUSION

In this article, a bilevel co-investment framework, which
supports interlinked optimization and decision making tasks for
a coordinated but independently cleared gas–electric market,
was developed. The uncertainty of demands in both markets
and the discreteness of decisions in the top and bottom level
problems were modeled. An exact solution method, based on
a reformulation-and-decomposition procedure, was proposed
to iteratively compute the optimal decision for the stochastic
problem.

We illustrated the method on two test systems assuming
various case studies. It was shown that ignoring gas system

Authorized licensed use limited to: UNIVERSITY OF WESTERN ONTARIO. Downloaded on November 20,2022 at 08:03:25 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KARIMIANFARD et al.: CO-OPTIMIZATION OF BATTERY STORAGE INVESTMENT AND GRID EXPANSION IN INTEGRATED ENERGY SYSTEMS 11

in the planning problem can produce cheaper but erroneous
plans as gas-fired units restrictions are not properly captured
in such interlinked systems. We also examined the impacts
of using a simplified power market clearing model in which
power generation nonconvexities, such as start-up/no-load costs
and/or minimum generation levels, are neglected and showed
that such simplifications lead to approximate and unrealistic
expansion plans with zero storage investment.

For future studies, the model can be extended to include
reliability criteria to ensure the security of power and gas systems
under contingency conditions.
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