A Model for Analysis of Work Done by a Special Force

By: Gholamreza Soleimani

https://emfps.blogspot.com/2018/02/a-model-for-analysis-of-work-doneby.html

This model is an example as application one of theorems mentioned in article of "The Change Depends on the Direction of the Motion: The Symmetric Group Action (2)" posted on link:

http://www.emfps.blogspot.com/2017/08/the-change-depends-on-direction-of 9.html?m=1

Work Done by Force

When we are speaking about the work done by a force, we have usually two options:

1. The work done on a particle by a constant force in magnitude and direction which is calculated by below equation:

$$W = \overrightarrow{F} \cdot \Delta r \cdot Cos \theta$$

2. The work done on a particle by a varying force in magnitude and direction in which we should use the line integral to calculate it as follows:

$$\vec{F} = M(x, y, z)l + N(x, y, z)j + P(x, y, z)k$$
$$W = \int \vec{F} \cdot \vec{r} = \int M(x, y, z) \, dx + N(x, y, z) \, dy + P(x, y, z) \, dz$$

But, in this article, I am willing to introduce you a special force which has the constant magnitude but varying in direction. In this case, I have made a model that it is able to show us the location of the particle after being displaced by this special force.

Suppose a particle P (0, 0, 0) just like below figure being displaced by a force F:

Theorem: The force with below vector has the constant magnitude equal to <u>1.22474487139159</u> <i>but varying in direction:

 $\overrightarrow{F} = Sin \varphi i + Sin (60 - \varphi)j - Sin (60 + \varphi)k$ $\|\overrightarrow{F}\| = 1.22474487139159$

(Where *\varphi* is degree)

In this case, we can still use option (1) and below equation to calculate the work done:

$$W = \overrightarrow{F} \cdot \Delta r \cdot Cos \theta$$

Below figure shows the components of this model:

.4	A	8	С	D	Ε	F	6	н	1	1
1	Go	Back		Inputs			Outputs			
2			٠	155			- 1 - I	1	k	I FI I
3			F	77		Force vector	0.422618	-0.99619	0.573576	1.224745
4						Direction of Force	0.345066	-0.81339	0.468323	1
5						Work Done	41.8815			
6							- i -	i	k	e
7						Location of the Particle	-5.37043	-0.09374	76.81243	77
8						Direction of the Particle	-0.06975	-0.00122	0.997564	1
2										

Let me explain you about the components of above model as follows:

1. In left side on cells C2:D3, we have inputs including the angle ϕ (degree) of force vector and amount of displacement of particle "P" which is "r".

2. In right side on cells F3:J8, we have outputs including:

2-1) on cells G3:I3, a special force vector can be calculated by using above theorem.

2-2) on cells G4:I4, the direction of special force can be obtained by using below formula:

 $Direction \, \overrightarrow{F} = \frac{Sin \, \varphi \, i}{\left\| \overrightarrow{F} \, \right\|} + \frac{Sin \, (60 - \varphi) j}{\left\| \overrightarrow{F} \, \right\|} - \frac{Sin \, (60 + \varphi) k}{\left\| \overrightarrow{F} \, \right\|}$

The magnitude of this force is the constant and equal to 1.22474487139159.

2-3) on cell G5, we have the work done which is calculated by below formulas:

$$\vec{r} = xi + yj + zk$$

$$\vec{F} = Sin \,\varphi \, i + Sin \, (60 - \varphi)j - Sin \, (60 + \varphi)k$$

$$W = \vec{F} \times \vec{r}$$

$$W = xSin \,\varphi + ySin \, (60 - \varphi) - z \, Sin \, (60 + \varphi)$$

2-4) on cells G7:17, we have the location particle P (x, y, z) which is derived by this model.

2-5) on cells G8:18, the direction of motion particle P can be calculated by using below formula:

Direction
$$P(x, y, z) = \frac{xi}{\|r\|} + \frac{yj}{\|r\|} + \frac{zk}{\|r\|}$$

2-6) The change of direction particle P will be done by click on cell A1 and also this change will again go back by click on cell B1 (Go & Back).