# A Model for Analysis of Work Done by a Special Force 

By: Gholamreza Soleimani<br>https://emfps.blogspot.com/2018/02/a-model-for-analysis-of-work-done-<br>by.html

This model is an example as application one of theorems mentioned in article of "The Change Depends on the Direction of the Motion: The Symmetric Group Action (2)" posted on link:
http://www.emfps.blogspot.com/2017/08/the-change-depends-on-direction-of 9.html?m=1

## Work Done by Force

When we are speaking about the work done by a force, we have usually two options:

1. The work done on a particle by a constant force in magnitude and direction which is calculated by below equation:

$$
W=\vec{F} \cdot \Delta r \cdot \operatorname{Cos} \theta
$$

2. The work done on a particle by a varying force in magnitude and direction in which we should use the line integral to calculate it as follows:

$$
\begin{aligned}
& \vec{F}=M(x, y, z) i+N(x, y, z) j+P(x, y, z) k \\
& W=\int \vec{F} \cdot \vec{r}=\int M(x, y, z) d x+N(x, y, z) d y+P(x, y, z) d z
\end{aligned}
$$

But, in this article, I am willing to introduce you a special force which has the constant magnitude but varying in direction. In this case, I have made a model that it is able to show us the location of the particle after being displaced by this special force.

Suppose a particle $P(0,0,0)$ just like below figure being displaced by a force $F$ :


Theorem: The force with below vector has the constant magnitude equal to $\mathbf{1 . 2 2 4 7 4 4 8 7 1 3 9 1 5 9}$ but varying in direction:
$\vec{F}=\operatorname{Sin} \varphi \boldsymbol{i}+\operatorname{Sin}(60-\varphi) j-\operatorname{Sin}(60+\varphi) k$
$\|\vec{F}\|=1.22474487139159$
(Where $\varphi$ is degree)

In this case, we can still use option (1) and below equation to calculate the work done:

$$
W=\overrightarrow{\boldsymbol{F}} \cdot \Delta r \cdot \operatorname{Cos} \theta
$$

Below figure shows the components of this model:


Let me explain you about the components of above model as follows:

1. In left side on cells C2:D3, we have inputs including the angle $\phi$ (degree) of force vector and amount of displacement of particle " $P$ " which is " $r$ ".
2. In right side on cells F3:J8, we have outputs including:

2-1) on cells G3:I3, a special force vector can be calculated by using above theorem.

2-2) on cells G4:I4, the direction of special force can be obtained by using below formula:

Direction $\vec{F}=\frac{\sin \varphi i}{\|\vec{F}\|}+\frac{\sin (60-\varphi) j}{\|\vec{F}\|}-\frac{\sin (60+\varphi) k}{\|\vec{F}\|}$

The magnitude of this force is the constant and equal to 1.22474487139159 .

2-3) on cell G5, we have the work done which is calculated by below formulas:
$\vec{r}=x i+y j+z k$
$\vec{F}=\operatorname{Sin} \varphi i+\operatorname{Sin}(60-\varphi) j-\operatorname{Sin}(60+\varphi) k$
$W=\vec{F} \times \vec{r}$
$W=x \operatorname{Sin} \varphi+y \operatorname{Sin}(60-\varphi)-z \operatorname{Sin}(60+\varphi)$

2-4) on cells G7:I7, we have the location particle $P(x, y, z)$ which is derived by this model.

2-5) on cells G8:I8, the direction of motion particle $P$ can be calculated by using below formula:

Direction $P(x, y, z)=\frac{x i}{\|r\|}+\frac{y j}{\|r\|}+\frac{z k}{\|r\|}$

2-6) The change of direction particle $P$ will be done by click on cell $A 1$ and also this change will again go back by click on cell B1 (Go \& Back).

