MMK226179 BREEAM

{Name of Writer}

{Name of Institute}

{Date}

INTRODUCTION

This paper aims to provide strategies to improve the sustainability by assessing the focused building through Breeam. The building is a 230-240 bed hotel named "St Enoch Square Hotel" at the city Centre in Glasgow. The main purpose is to enhance the overall breeam rating of the building by applying sustainable methods on building. The paper will first discuss the concept of breeam followed by the analysis of ethos, scope and application of breeam. The paper will also discuss the rating criteria of bream and related proposals to improve the overall rating of the concerned building to reduce its environmental impacts.

WHAT IS BREEAM?

BREEAM is the short form for Building Research Establishment Environment Assessment methodology and as the name suggests it is the method of assessing projects against sustainability and is used by various stakeholders of the project to learn about the environmental impacts of their projects in order to utilize resources effectively.

At present, it has been used in more than 50 countries with building assessments to over 260,000. (Introduction to breeam, 2014)

BREEAM ETHOS:

BREEAM can assists in improving the sustainability of buildings by assessing them on environmental criteria hence developing a best practice standard worldwide. This will be beneficial for both the building and the building users because it will increase the efficiency of the building and maintain the wellbeing of people of the building.

(Parker, n.d), (Breeam, n.d)

SCOPE AND APPLICATION OF BREEAM:

Bream has extended its scope from new individual buildings only at the construction stage to include the whole life cycle of buildings. Its regular updates and revisions that now include planning, operation and refurbishment stages are compelled by the requirements to improved sustainability.

The standards of bream can be applied to typically any building and on any location with versions available for existing and new buildings and large projects and projects for renovations.

Following are the major manuals available from oldest to latest.

Breeam Communities: this manual helps in assessing the sustainability of large scale projects. (Breem communities, 2012)

Breeam refurbishment: this manual helps in assessing the sustainability of the refurbishment projects. It has different versions available for domestic and non-domestic refurbishments and the one is for international and one is solely for UK. (Breeam refurbishment, 2014), (Breeam international, 2015)

Breeam in use: this manual helps in improving the sustainability of existing building with an aim to reduce running cost and reducing the environmental impacts (Breeam in use, 2015)

Breeam International new construction: this manual helps in improving the sustainability of new buildings worldwide except for UK because UK has its own manual for new building's sustainability assessment (Breeam International, 2015)

Breeam UK new construction: this manual helps in assessing the sustainability of non-domestic buildings in UK. (Breeam UK new construction, 2016)

BREEAM METHODOLOGY OF ASSESSMENT:

Through Breeam, the sustainability of the project is assessed based on various factors and then the project receives an overall rating in sustainability. The rating of the project depend on the total scores that the project receives based on various factors and different aspects of the project. If the project receives a score of above 85% or above, the project is regarded as outstanding in terms of sustainability. Similarly, ratings vary from excellent to very good, good, pass and unclassified based on the scores. Table, 1 illustrate the ratings in relation with the scores.

BREEAM Rating	% score
Outstanding	≥85
Excellent	≥ 70
Verygood	≥ 55
Good	≥ 45
Pass	≥ 30
Unclassified	<30

 Table 1: breeam rating benchmark (breeam, 2020)

BREEAM ASSESSMENT MAIN AREAS OF FOCUS:

BREEAM has published several technical manuals which detail the scope of the assessment, the scoring process, the evidential requirements and the areas which will be assessed.

The BREEAM UK NEW CONSTRUCTION 2018 technical manual (BREEAM, 2018) addresses

the 10 main categories of assessment that will contribute to the overall rating of the project.

Management	Health and Wellbeing
 Man 01 Project brief and design Man 02 Life cycle cost and service life planning Man 03 Responsible construction practices Man 04 Commissioning and handover Man 05 Aftercare 	 Hea 01 Visual comfort Hea 02 Indoor air quality Hea 04 Thermal comfort Hea 05 Acoustic performance Hea 06 Security Hea 07 Safe and healthy surroundings
Energy	Transport
 Ene 01 Reduction of energy use and carbon emissions Ene 02 Energy monitoring Ene 03 External lighting Ene 04 Low carbon design Ene 05 Energy efficient cold storage Ene 06 Energy efficient transportation systems Ene 07 Energy efficient laboratory systems Ene 08 Energy efficient equipment 	 Tra 01 Transport assessment and travel plan Tra 02 Sustainable transport measures
Water	Materials
 Wat 01 Water consumption Wat 02 Water monitoring Wat 03 Water leak detection Wat 04 Water efficient equipment 	 Mat 01 Environmental impacts from construction products - Building life cycle assessment (LCA) Mat 02 Environmental impacts from construction products - Environmental Product Declarations (EPD) Mat 03 Responsible sourcing of construction products Mat 05 Designing for durability and resilience Mat 06 Material efficiency
Waste	Land Use and Ecology
 Wst 01 Construction waste management Wst 02 Use of recycled and sustainably sourced aggregates Wst 03 Operational waste Wst 04 Speculative finishes (Offices only) Wst 05 Adaptation to climate change Wst 06 Design for disassembly and adaptability 	 LE01 Site selection LE02 Ecological risks and opportunities LE03 Managing impacts on ecology LE04 Ecological change and enhancement LE05 Long term ecological management and maintenance
Pollution	Innovation
 Pol 01 Impact of refrigerants Pol 02 Local air quality Pol 03 Flood and surface water management Pol 04 Reduction of night time light pollution Pol 05 Reduction of noise pollution 	– Inn 01 Innovation

 Table 2: Breeam Assessment Categories (Breeam, 2018)

STRATEGIES AND METHODS APPLIED TO "ST. ENOCH SQUARE HOTEL":

This building is going to establish in UK after demolishing some portion of existing buildings. Hence to establish its assessment categories, BREEAM UK NEW CONSTRUCTION, 2018 and BREEAM UK REFURBISHMENT, 2014 has been taken into consideration.

S.NO.	CATEGORY	DESCRIPTION	STRATEGY
1	MANAGEMENT	It is the adoption of management	The management should
		practices in design, construction	be sourced to local
		and after construction phases that	laborers that would
		enhances the sustainability in	decrease the overall
		projects	distance and cost of
	MAN 01	Adoption of process that	transport.
		optimize project performance by	
		avoiding needless cost	
	MAN 02	Adoption of process that use life	
		cycle costing to improve design,	
		specification and process.	
	MAN 03	Adoption of environmentally and	
		socially managed construction	
		sites and continuous monitoring	
		of sites while reducing utility	
		consumption	
	MAN 04	Adoption of process that ensure	
		identification and rectification of	
		defects and ensure fulfilling the	
		needs of residents.	

	MAN 05	Adoption of providing assistance	
		after operation during the initial	
		year of the building to ensure that	
		the building is responding	
		according to the design and the	
		need of the residents.	
2	HEALTH AND	Creating a healthy and safe	From the elevation of
	WELL BEING	environment both internally and	Howard street and Dixon
		externally by adopting methods	street it seems that the
		that encourage health and safety	opening is provided from
		of building users.	ground to second. The
	HEA 01	Adoption of methods that	opening should be
		facilitate the building users by	covered with glass
		comfort of visual by providing	allowing full sunlight
		external day light factors and	into the mall reducing the
		maximize outside views.	need of internal
	HEA 02	Adoption of process that enhance	lightening. Also, to
		improved air quality by catering	improve the security of
		pollution and harmful emission	the occupant's security
		in the design and construction	guards should be
		phases	provided.
	HEA 03		
	HEA 04	Adoption of process that consider	
		current as well as future climatic	
		conditions and temperature	
		control strategies to ensure	
		thermal comfort to the users.	
	HEA 05	Adoption of process to provide	
		suitable acoustic level to the	

		users for the activities in the	
		residential spaces	
	HEA 06	Adoption of process to ensure	
		safety of the residents by	
		fulfilling their security needs	
	HEA 07	Providing safe sites and access to	
		outdoor space to the residents	
		that enhances their safety and	
		well being	
3	ENERGY	The adoption of process that	Installing of solar panels
		ensures energy efficient buildings	could improve the overall
		by improving efficiency of the	energy efficiency of the
		building and reducing emissions	building as the solar
		from carbon.	energy has reduced
	ENE 01	Making design and accurate	impact on global
		modelling that ensure energy	warming. (Dincer,
		efficient buildings	zamfirescu, 2012)
	ENE 02	Adoption of process that assists	
		in identifying and reducing high	
		demands of energy by measuring	
		the energy consumption of	
		building accurately	
	ENE 03	Provision of external lightning	
		that is energy efficient to reduce	
		the energy consumption of	
		building	
	ENE 04	Adoption of design solutions that	
		are passive and zero carbon	
		sources of energy to reduce the	
		energy consumption of building.	

	ENE 05	Adoption of energy efficient	
		systems of refrigeration that	
		reduce the carbon emissions	
		through design and installation.	
	ENE 06	Provision of optimum number	
		and size transportation systems	
		that are energy efficient to	
		deduce the energy consumption	
		of building	
	ENE 07	Provision of energy efficient	
		instruments for building that	
		reduces total energy demand that	
		is un regulated.	
4	TRANSPORT	Adoption of process that	The provision of bus
		provides building users with	services at fixed time will
		sustainable means of transports	encourage the occupants
		that reduces the carbon emission	to arrive and depart at
		throughout the life span by	fixed times and hence
		reducing journeys through cars.	ensuring sustainability by
	TRA 01	Reducing pollution through	lowering the number of
		transport by providing good	journeys. (sustainable
		public transport	transport solution)
	TRA 02	Development of facilities in close	
		proximity that is accessible to the	
		building residents	
5	WATER	Adoption of method that focus on	Rainwater recycling
		identifying reduced water	system is the process of
		consumption means over the life	recycling rain water for
		span of the building	toilet flushing. It is an

	WAT 01	Adoption of method that reduce	ecofriendly method that
		the water consumption demand	and was used effectively
		by providing water collection and	in the One Angel Square
		recycling systems.	Headquarters project and
	WAT 02	Adoption of methods that	can also be used in St.
		identify areas of high water usage	Enoch Square hotel
		and its causes to reduce its use.	project.
	WAT 03	Provision of leak detecting	
		system and control devices to	
		prevent unintended water	
		consumption.	
	WAT 04	Provision of efficient system' to	
		improve the design of process	
		that utilize water other than	
		sanitary and domestic use.	
6	MATERIALS	The adoption of methods that	Research says that
		ensure efficiency of construction	aluminum windows lasts
		products in order to reduce	longer as compare to
		environmental and social	UPVC windows, which
		impacts.	are cheaper in cost
	MAT 01	Adoption of decision making	(Dardalis, 2012), hence
		process in the design after	the windows should be
		conducting life cycle assessment	constructed of aluminum.
		of the building to reduce	
		environmental impacts	
	MAT 02	Declaring the environmental	
		impacts of construction products	
		so that they can be comparable	
		for use.	

	MAT 03	This includes sourcing and	
		transporting products at site	
		responsibly	
	MAT 04		
	MAT 05	Adoption of products in design	
		that prevent from degradation	
		and hence increasing the	
		building's life span	
	MAT 06	It encourage the efficient and	
		optimum use of products in all	
		stages of projects to reduce	
		environmental impacts	
7	WASTE	The adoption of methods to	As the St Enoch square
7	WINDIL	ensure sustainable waste	hotel will be built after
		management by ancouraging	domolishing the existing
		entimized design for wests	area the demolished
			area, the demonstred
		minimization, functional	material could be
		requirements of present and	recycled and used for the
		future and measures to reduce	new construction and
		waste in future.	hence would minimize
	WST 01	Adoption of resource	waste.
		management plan that focus on	
		material recovery during	
		demolition	
	WST 02	Use of aggregates that have less	
		environmental impact to reduce	
		waste and optimizing efficiency	
		of materials.	

	WST 03	Provision of amenities to store	
		landfill's operational waste	
	WST 04	To reduce waste only the agreed	
		area should be provided with	
		floor and ceiling finishes	
	WST 05	Adoption of measure to prevent	
		extreme whether impacts during	
		the building's life span.	
	WST 06	Adoption of methods in design	
		that provide options related to	
		adaptability and disassembly that	
		ensure future changes.	
8	LAND USE AND	The adoption of process which	The amount of landfill
	ECOLOGY	ensures sustainable use of land,	waste could be
		biodiversity and protection of	minimized by the
		habitat.	provision of recycle plan
	LE 01	Encouraging reuse of land after	which is an effective way
		appropriate remedy that has been	in improving the
		established and contaminated	sustainability credits of
		previously.	the building.
	LE 02	Determination of the strategy that	
		provides opportunity related to	
		site after identifying the	
		ecological risks	
	LE03	Adoption of measures to reduce	
		effects of ecology on existing	
		site.	
	LE 04	Adoption of measures to enhance	
		ecology of site.	

	LE 05	Adoption of measures to manage	
		and maintain site ecology for	
		thrive of both current and new	
		ecological features.	
9	POLLUTION	Adoption of methods to ensure	Sustainable sources of
		pollution control and surface	materials should be used
		water run off due to the location	and preference should be
		and function of building.	given to local suppliers
	POL 01	Reducing the impact of gas	because it will limit the
		emissions due to refrigeration.	fuel and carbon
	POL 02	Adopting methods to improve air	emissions due to travel
		quality by limiting their impact	time.
		through the provision of	
		combustion plants.	
	POL 03	Reducing the damage due to on	
		site and off site flooding	
	POL 04	Provision of adequate light	
		sources that reduces the impact	
		of light pollution at night	
	POL 05	Adoption of measures to reduce	
		external noise in the building	
10	INNOVATION	Adoption of innovative process	
		and products for which a credit	
		can be claimed.	

CONCLUSION

To conclude, In order to improve the sustainability breeam provides 10 categories for assessment. The proper implementation of the strategies provided against each category would earn a credit for each and hence more the credits, the building would gain more rating and potentially improving sustainability.

For the St Enoch Hotel, number of methods and processes provided above that could be adopted to ensure sustainability for example: sourcing work to the locals, provision of glass on openings and aluminium on windows, installing solar panels, rainwater recycling systems, provision of fixed time bus services, that would all assists in achieving the overall "excellent" rating for the building.

REFERENCES:

BREEAM, Unknown. What is BREEAM? Retrieved from: http://www.breeam.com/index.jsp.

- INTRODUCTION TO BREEAM, (Aug 23, 2016), BREEAM UK New Construction nondomestic buildings technical manual 2014, BRE Global, Retrieved from https://www.breeam.com/BREEAMUK2014SchemeDocument/content/01_introduction_ newcon/2introductiontobreeam_nc.htm
- James parker, n.d., The Value of BREEAM Retrieved from https://tools.breeam.com/filelibrary/BREEAM%20and%20Value/The_Value_of_BREEA M.pdf
- BREEAM UK NEW CONSTRUCTION-Non domestic buildings 2018, BRE Global Retrieved from https://www.breeam.com/discover/technical-standards/newconstruction
- BREEAM INTERNATIONAL NEW CONSTRUCTION, 2016, BRE Global Retrieved from https://www.breeam.com/discover/technical-standards/newconstruction/
- BREEAM INUSE, 2015, BRE Global Retrieved from https://www.breeam.com/discover/technical-standards/breeam-in-use/
- BREEAM UK Refurbishment and Fit-out Non domestic buildings, 2014, BRE Global Retrieved from https://www.breeam.com/discover/technical-standards/refurbishment-and-fit-out/
- BREEAM INTERNATIONAL NON DOMESTIC REFURBISHMENT, 2015, BRE Global retrieved from
- BREEAM COMMUNITIES, 2012, BRE GLOBAL, Retrieved from https://www.breeam.com/discover/technical-standards/communities/

- DINCER, I. and ZAMFIRESCU, C., 2012. Sustainable Energy Systems and Applications. Boston: Springer US. [e-book]
- DARDALIS, N., 2012. What is better? Aluminum or PVCu? Aluminum Trade Supply ltd. Retrieved from: http://www.aluminiumtradesupply.co.uk/5099/what-is-better-aluminiumor-pvcu/.
- SUSTAINABLE TRANSPORT SOLUTION, (April 27, 2015), BREEAM International nondomestic buildings technical manual 2014, BRE Global, Retrieved from https://www.breeam.com/internationalRFO2015/content/07_transport/tra01_rfrb.htm