
Computation

Visualization

Programming

Learning MATLAB
Version 6 (Release 12)

MATLAB
®

STUDENT VERSION

How to Contact The MathWorks:

www.mathworks.com Web
ftp.mathworks.com Anonymous FTP server
comp.soft-sys.matlab Newsgroup

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports

ISBN 0-9672195-3-1

Learning MATLAB
 COPYRIGHT 1999 - 2001 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by
or for the federal government of the United States. By accepting delivery of the Program, the government
hereby agrees that this software qualifies as "commercial" computer software within the meaning of FAR
Part 12.212, DFARS Part 227.7202-1, DFARS Part 227.7202-3, DFARS Part 252.227-7013, and DFARS Part
252.227-7014. The terms and conditions of The MathWorks, Inc. Software License Agreement shall pertain
to the government’s use and disclosure of the Program and Documentation, and shall supersede any
conflicting contractual terms or conditions. If this license fails to meet the government’s minimum needs or
is inconsistent in any respect with federal procurement law, the government agrees to return the Program
and Documentation, unused, to MathWorks.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and
Target Language Compiler is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: August 1999 First printing New manual
January 2001 Second printing Revised for MATLAB 6.0 (Release 12)

iii

Contents

1
Introduction

About the Student Version . 1-2
Student Use Policy . 1-2
Differences Between the Student Version
and the Professional Version . 1-3

Obtaining Additional MathWorks Products 1-5

Getting Started with MATLAB . 1-6

Finding Reference Information . 1-7

Troubleshooting and Other Resources 1-8
Documentation Library . 1-8
MathWorks Web Site . 1-10
MathWorks Education Web Site . 1-10
MATLAB Related Books . 1-10
MathWorks Store . 1-10
Usenet Newsgroup . 1-10
MathWorks Knowledge Base . 1-10
Technical Support . 1-11
Product Registration . 1-11

About MATLAB and Simulink . 1-12
What Is MATLAB? . 1-12
What Is Simulink? . 1-14

iv Contents

2
Installation

Installing on Windows . 2-2
System Requirements . 2-2
Installing MATLAB . 2-4
Installing Additional Toolboxes . 2-5
Accessing the Online Documentation (Help) 2-6

Installing on Linux . 2-7
System Requirements . 2-7
Installing MATLAB . 2-8
Post Installation Procedures . 2-13
Installing Additional Toolboxes . 2-13
Accessing the Online Documentation (Help) 2-14

3
Development Environment

Introduction . 3-2

Starting and Quitting MATLAB . 3-3
Starting MATLAB . 3-3
Quitting MATLAB . 3-3

MATLAB Desktop . 3-4

Desktop Tools . 3-6
Command Window . 3-6
Launch Pad . 3-8
Help Browser . 3-8
Current Directory Browser . 3-11
Workspace Browser . 3-12
Editor/Debugger . 3-14

Other Development Environment Features 3-15

v

4
Getting Started

Matrices and Magic Squares . 4-2
Entering Matrices . 4-3
sum, transpose, and diag . 4-4
Subscripts . 4-6
The Colon Operator . 4-7
The magic Function . 4-8

Expressions . 4-10
Variables . 4-10
Numbers . 4-10
Operators . 4-11
Functions . 4-11
Examples of Expressions . 4-13

Working with Matrices . 4-14
Generating Matrices . 4-14
The load Command . 4-15
M-Files . 4-15
Concatenation . 4-16
Deleting Rows and Columns . 4-16

More About Matrices and Arrays . 4-18
Linear Algebra . 4-18
Arrays . 4-21
Multivariate Data . 4-23
Scalar Expansion . 4-24
Logical Subscripting . 4-25
The find Function . 4-26

Controlling Command Window Input and Output 4-28
The format Command . 4-28
Suppressing Output . 4-30
Entering Long Command Lines . 4-30
Command Line Editing . 4-30

vi Contents

5
Graphics

Basic Plotting . 5-2
Creating a Plot . 5-2
Multiple Data Sets in One Graph . 5-3
Specifying Line Styles and Colors . 5-4
Plotting Lines and Markers . 5-5
Imaginary and Complex Data . 5-6
Adding Plots to an Existing Graph . 5-7
Figure Windows . 5-9
Multiple Plots in One Figure . 5-9
Controlling the Axes . 5-10
Axis Labels and Titles . 5-12
Saving a Figure . 5-13

Editing Plots . 5-14
Interactive Plot Editing . 5-14
Using Functions to Edit Graphs . 5-14
Using Plot Editing Mode . 5-15
Using the Property Editor . 5-16

Mesh and Surface Plots . 5-18
Visualizing Functions of Two Variables 5-18

Images . 5-24

Printing Graphics . 5-26

Handle Graphics . 5-28
Graphics Objects . 5-28
Setting Object Properties . 5-31
Finding the Handles of Existing Objects 5-33

Graphics User Interfaces . 5-35
Graphical User Interface Design Tools 5-35

Animations . 5-37
Erase Mode Method . 5-37
Creating Movies . 5-38

vii

6
Programming with MATLAB

Flow Control . 6-2
if . 6-2
switch and case . 6-4
for . 6-4
while . 6-5
continue . 6-5
break . 6-6

Other Data Structures . 6-7
Multidimensional Arrays . 6-7
Cell Arrays . 6-9
Characters and Text . 6-11
Structures . 6-14

Scripts and Functions . 6-17
Scripts . 6-17
Functions . 6-18
Global Variables . 6-20
Passing String Arguments to Functions 6-20
The eval Function . 6-22
Vectorization . 6-23
Preallocation . 6-23
Function Handles . 6-24
Function Functions . 6-24

Demonstration Programs Included with MATLAB 6-27

7
Symbolic Math Toolbox

Introduction . 7-2

Getting Help . 7-4

viii Contents

Getting Started . 7-5
Symbolic Objects . 7-5
Creating Symbolic Variables and Expressions 7-6
Symbolic and Numeric Conversions . 7-7
Creating Symbolic Math Functions . 7-14

Calculus . 7-16
Differentiation . 7-16
Limits . 7-20
Integration . 7-22
Symbolic Summation . 7-27
Taylor Series . 7-28
Extended Calculus Example . 7-29

Simplifications and Substitutions . 7-43
Simplifications . 7-43
Substitutions . 7-51

Variable-Precision Arithmetic . 7-58
Overview . 7-58
Example: Using the Different Kinds of Arithmetic 7-59
Another Example . 7-61

Linear Algebra . 7-63
Basic Algebraic Operations . 7-63
Linear Algebraic Operations . 7-64
Eigenvalues . 7-68
Jordan Canonical Form . 7-74
Singular Value Decomposition . 7-76
Eigenvalue Trajectories . 7-78

Solving Equations . 7-86
Solving Algebraic Equations . 7-86
Several Algebraic Equations . 7-87
Single Differential Equation . 7-90
Several Differential Equations . 7-92

ix

A
MATLAB Quick Reference

B
Symbolic Math Toolbox Quick Reference

x Contents

1

Introduction

About the Student Version 1-2

Obtaining Additional MathWorks Products 1-5

Getting Started with MATLAB 1-6

Finding Reference Information 1-7

Troubleshooting and Other Resources 1-8

About MATLAB and Simulink 1-12

1 Introduction

1-2

About the Student Version
MATLAB® & Simulink® are the premier software packages for technical
computation, data analysis, and visualization in education and industry. The
Student Version of MATLAB & Simulink provides all of the features of
professional MATLAB, with no limitations, and the full functionality of
professional Simulink, with model sizes up to 300 blocks. The Student Version
gives you immediate access to the high-performance numeric computing power
you need.

MATLAB allows you to focus on your course work and applications rather than
on programming details. It enables you to solve many numerical problems in a
fraction of the time it would take you to write a program in a lower level
language. MATLAB helps you better understand and apply concepts in
applications ranging from engineering and mathematics to chemistry, biology,
and economics.

Simulink, included with the Student Version, provides a block diagram tool for
modeling and simulating dynamical systems, including signal processing,
controls, communications, and other complex systems.

The Symbolic Math Toolbox, also included with the Student Version, is based
on the Maple® V symbolic kernel and lets you perform symbolic computations
and variable-precision arithmetic.

MATLAB products are used in a broad range of industries, including
automotive, aerospace, electronics, environmental, telecommunications,
computer peripherals, finance, and medical. More than 400,000 technical
professionals at the world’s most innovative technology companies,
government research labs, financial institutions, and at more than 2,000
universities rely on MATLAB and Simulink as the fundamental tools for their
engineering and scientific work.

Student Use Policy
This Student License is for use in conjunction with courses offered at a
degree-granting institution. The MathWorks offers this license as a special
service to the student community and asks your help in seeing that its terms
are not abused.

To use this Student License, you must be a student using the software in
conjunction with courses offered at degree-granting institutions.

About the Student Version

1-3

You may not use this Student License at a company or government lab. Also,
you may not use it for research or for commercial or industrial purposes. In
these cases, you can acquire the appropriate professional or academic version
of the software by contacting The MathWorks.

Differences Between the Student Version and the
Professional Version

MATLAB
This version of MATLAB provides full support for all language features as well
as graphics, external interface and Application Program Interface support, and
access to every other feature of the professional version of MATLAB.

Note MATLAB does not have a matrix size limitation in this Student
Version.

MATLAB Differences. There are a few small differences between the Student
Version and the professional version of MATLAB:

• The MATLAB prompt in the Student Version is

EDU>>

• The window title bars include the words

<Student Version>

• All printouts contain the footer

Student Version of MATLAB

This footer is not an option that can be turned off; it will always appear in
your printouts.

1 Introduction

1-4

Simulink
This Student Version contains the complete Simulink product, which is used
with MATLAB to model, simulate, and analyze dynamical systems.

Simulink Differences.

• Models are limited to 300 blocks.

• The window title bars include the words

<Student Version>

• All printouts contain the footer
Student Version of MATLAB

This footer is not an option that can be turned off; it will always appear in
your printouts.

Note Using Simulink, which is accessible from the Help browser, contains all
of the Simulink related information in the Learning Simulink book plus
additional, advanced information.

Symbolic Math Toolbox
The Symbolic Math Toolbox included with this Student Version lets you use an
important subset of Maple. You can access all of the functions in the
professional version of the Symbolic Math Toolbox except maple, mapleinit,
mfun, mfunlist, and mhelp. For a complete list of all the available functions, see
Appendix B, “Symbolic Math Toolbox Quick Reference.”

Obtaining Additional MathWorks Products

1-5

Obtaining Additional MathWorks Products
Many college courses recommend MATLAB as their standard instructional
software. In some cases, the courses may require particular toolboxes,
blocksets, or other products. Many of these products are available for student
use. You may purchase and download these additional products at special
student prices from the MathWorks Store at www.mathworks.com/store.

Although many professional toolboxes are available at student prices from the
MathWorks Store, not every one is available for student use. Some of the
toolboxes you can purchase include:

• Communications

• Control System

• Fuzzy Logic

• Image Processing

• Neural Network

• Optimization

• Signal Processing

• Statistics

• Stateflow® (A demo version of Stateflow is included
with your Student Version.)

For an up-to-date list of which toolboxes are available, visit the MathWorks
Store.

Note The toolboxes that are available for the Student Version of MATLAB &
Simulink have the same functionality as the full, professional versions.
However, these student versions will only work with the Student Version.
Likewise, the professional versions of the toolboxes will not work with the
Student Version.

1 Introduction

1-6

Getting Started with MATLAB

What I Want What I Should Do

I need to install MATLAB. See Chapter 2, “Installation,” in this book.

I want to start MATLAB. (PC) Your MathWorks documentation CD must be in your
CD-ROM drive to start MATLAB. Double-click the MATLAB
icon on your desktop.

(Linux) Enter the matlab command.

I’m new to MATLAB and
want to learn it quickly.

Start by reading Chapters 1 through 6 of Learning MATLAB.
The most important things to learn are how to enter matrices,
how to use the : (colon) operator, and how to invoke functions.
You will also get a brief overview of graphics and programming
in MATLAB. After you master the basics, you can access the rest
of the documentation through the online help facility (Help).

I want to look at some
samples of what you can do
with MATLAB.

There are numerous demonstrations included with MATLAB.
You can see the demos by selecting Demos from the Help menu.
(Linux users type demo at the MATLAB prompt.) There are
demos in mathematics, graphics, visualization, and much more.
You also will find a large selection of demos at
www.mathworks.com/demos.

Finding Reference Information

1-7

Finding Reference Information

What I Want What I Should Do

I want to know how to use a
specific function.

Use the online help facility (Help). To access Help, use the
command helpbrowser or use the Help menu. The MATLAB
Function Reference is also available from Help in PDF format
(under Printable Documentation) if you want to print out any
of the function descriptions in high-quality form. Note: Your
MathWorks documentation CD must be in your CD-ROM drive
to access Help.

I want to find a function for
a specific purpose but I don’t
know its name.

There are several choices:

• See “MATLAB Quick Reference” in this book for a list of
MATLAB functions.

• From Help, peruse the MATLAB functions by Category or
Alphabetically.

• Use lookfor (e.g., lookfor inverse) from the command line.

• Use Index or Search from Help.

I want to learn about a
specific topic like sparse
matrices, ordinary
differential equations, or cell
arrays.

Use Help to locate the appropriate sections in Using MATLAB.

I want to know what
functions are available in a
general area.

Use Help to see the Function Reference by Category, or see
Appendix A, “MATLAB Quick Reference,” in this book for a list
of MATLAB functions. Help provides access to the reference
pages for the hundreds of functions included with MATLAB.

I want to learn about the
Symbolic Math Toolbox.

See Chapter 7, “Symbolic Math Toolbox,” and Appendix B,
“Symbolic Math Toolbox Quick Reference,” in this book. For
complete descriptions of the Symbolic Math Toolbox functions,
use Help and select Reference from Symbolic Math Toolbox.

1 Introduction

1-8

Troubleshooting and Other Resources

Documentation Library
Your Student Version of MATLAB & Simulink contains much more
documentation than the two printed books, Learning MATLAB and Learning
Simulink. On your CD is a personal reference library of every book and
reference page distributed by The MathWorks. Access this documentation
library from Help.

Note Even though you have the documentation set for the MathWorks family
of products, not every product is available for the Student Version of MATLAB
& Simulink. For an up-to-date list of available products, visit the MathWorks
Store. At the store you can also purchase printed manuals for the MATLAB
family of products.

Accessing the Online Documentation
Access the online documentation (Help) directly from your product CD. (Linux
users should refer to Chapter 2, “Installation,” for specific information on
configuring and accessing the online Help from the CD.)

1 Place the CD in your CD-ROM drive.

2 Select Full Product Family Help from the Help menu.

Help appears in a separate window.

What I Want What I Should Do

I have a MATLAB specific
problem I want help with.

Visit the Technical Support section
(www.mathworks.com/support) of the MathWorks Web site and
search the Knowledge Base of problem solutions.

I want to report a bug or
make a suggestion.

Use Help or send e-mail to bugs@mathworks.com or
suggest@mathworks.com.

Troubleshooting and Other Resources

1-9

Note When you start MATLAB for the first time, the Help Navigator
displays entries for additional products. To learn how to change the displayed
product list, see the “Product Filter” on page 3-10.

Tutorials and reference for
MATLAB

Tutorials and reference for
Simulink

Tutorials and reference for
Symbolic Math Toolbox

Tutorials and reference for
Stateflow

1 Introduction

1-10

MathWorks Web Site
Use your browser to visit the MathWorks Web site, www.mathworks.com. You’ll
find lots of information about MathWorks products and how they are used in
education and industry, product demos, and MATLAB based books. From the
Web site you will also be able to access our technical support resources, view a
library of user and company supplied M-files, and get information about
products and upcoming events.

MathWorks Education Web Site
This education-specific Web site, www.mathworks.com/education, contains
many resources for various branches of engineering, mathematics, and science.
Many of these include teaching examples, books, and other related products.
You will also find a comprehensive list of links to Web sites where MATLAB is
used for teaching and research at universities.

MATLAB Related Books
Hundreds of MATLAB related books are available from many different
publishers. An up-to-date list is available at www.mathworks.com/support/
books.

MathWorks Store
The MathWorks Store (www.mathworks.com/store) gives you an easy way to
purchase add-on products and documentation.

Usenet Newsgroup
If you have access to Usenet newsgroups, you can join the active community of
participants in the MATLAB specific group, comp.soft-sys.matlab. This
forum is a gathering of professionals and students who use MATLAB and have
questions or comments about it and its associated products. This is a great
resource for posing questions and answering those of others. MathWorks staff
also participates actively in this newsgroup.

MathWorks Knowledge Base
You can access the MathWorks Knowledge Base from the Support link on our
Web site. Our Technical Support group maintains this database of frequently
asked questions (FAQ). You can peruse the Knowledge Base to quickly locate

Troubleshooting and Other Resources

1-11

relevant data. You will find numerous examples on graphics, mathematics,
API, Simulink, and others. You can answer many of your questions by spending
a few minutes with this around-the-clock resource.

Technical Support
The MathWorks does not provide telephone technical support to users of the
Student Version of MATLAB & Simulink. There are numerous other vehicles
of technical support that you can use. The Additional Sources of Information
section in the CD holder identifies the ways to obtain support.

Registered users of the Student Version of MATLAB & Simulink can use our
electronic technical support services to answer product questions. Visit our
Technical Support Web site at www.mathworks.com/support.

After checking the available MathWorks sources for help, if you still cannot
resolve your problem, you should contact your instructor. Your instructor
should be able to help you, but if not, there is telephone technical support for
registered instructors who have adopted the Student Version of MATLAB &
Simulink in their courses.

Product Registration
Visit the MathWorks Web site (www.mathworks.com/student) and register
your Student Version.

1 Introduction

1-12

About MATLAB and Simulink

What Is MATLAB?
MATLAB is a high-performance language for technical computing. It
integrates computation, visualization, and programming in an easy-to-use
environment where problems and solutions are expressed in familiar
mathematical notation. Typical uses include:

• Math and computation

• Algorithm development

• Modeling, simulation, and prototyping

• Data analysis, exploration, and visualization

• Scientific and engineering graphics

• Application development, including graphical user interface building

MATLAB is an interactive system whose basic data element is an array that
does not require dimensioning. This allows you to solve many technical
computing problems, especially those with matrix and vector formulations, in
a fraction of the time it would take to write a program in a scalar noninteractive
language such as C or Fortran.

The name MATLAB stands for matrix laboratory. MATLAB was originally
written to provide easy access to matrix software developed by the LINPACK
and EISPACK projects. Today, MATLAB uses software developed by the
LAPACK and ARPACK projects, which together represent the state-of-the-art
in software for matrix computation.

MATLAB has evolved over a period of years with input from many users. In
university environments, it is the standard instructional tool for introductory
and advanced courses in mathematics, engineering, and science. In industry,
MATLAB is the tool of choice for high-productivity research, development, and
analysis.

Toolboxes
MATLAB features a family of application-specific solutions called toolboxes.
Very important to most users of MATLAB, toolboxes allow you to learn and
apply specialized technology. Toolboxes are comprehensive collections of
MATLAB functions (M-files) that extend the MATLAB environment to solve

About MATLAB and Simulink

1-13

particular classes of problems. Areas in which toolboxes are available include
signal processing, control systems, neural networks, fuzzy logic, wavelets,
simulation, and many others.

The MATLAB System
The MATLAB system consists of five main parts:

Development Environment. This is the set of tools and facilities that help you use
MATLAB functions and files. Many of these tools are graphical user interfaces.
It includes the MATLAB desktop and Command Window, a command history,
and browsers for viewing help, the workspace, files, and the search path.

The MATLAB Mathematical Function Library. This is a vast collection of computational
algorithms ranging from elementary functions like sum, sine, cosine, and
complex arithmetic, to more sophisticated functions like matrix inverse, matrix
eigenvalues, Bessel functions, and fast Fourier transforms.

The MATLAB language. This is a high-level matrix/array language with control
flow statements, functions, data structures, input/output, and object-oriented
programming features. It allows both “programming in the small” to rapidly
create quick and dirty throw-away programs, and “programming in the large”
to create complete large and complex application programs.

Handle Graphics®. This is the MATLAB graphics system. It includes high-level
commands for two-dimensional and three-dimensional data visualization,
image processing, animation, and presentation graphics. It also includes
low-level commands that allow you to fully customize the appearance of
graphics as well as to build complete graphical user interfaces on your
MATLAB applications.

The MATLAB Application Program Interface (API). This is a library that allows you to
write C and Fortran programs that interact with MATLAB. It include facilities
for calling routines from MATLAB (dynamic linking), calling MATLAB as a
computational engine, and for reading and writing MAT-files.

1 Introduction

1-14

What Is Simulink?
Simulink, a companion program to MATLAB, is an interactive system for
simulating nonlinear dynamic systems. It is a graphical mouse-driven program
that allows you to model a system by drawing a block diagram on the screen
and manipulating it dynamically. It can work with linear, nonlinear,
continuous-time, discrete-time, multirate, and hybrid systems.

Blocksets are add-ons to Simulink that provide additional libraries of blocks for
specialized applications like communications, signal processing, and power
systems.

Real-Time Workshop® is a program that allows you to generate C code from
your block diagrams and to run it on a variety of real-time systems.

What Is Stateflow?
Stateflow is an interactive design tool for modeling and simulating complex
reactive systems. Tightly integrated with Simulink and MATLAB, Stateflow
provides Simulink users with an elegant solution for designing embedded
systems by giving them an efficient way to incorporate complex control and
supervisory logic within their Simulink models.

With Stateflow, you can quickly develop graphical models of event-driven
systems using finite state machine theory, statechart formalisms, and flow
diagram notation. Together, Stateflow and Simulink serve as an executable
specification and virtual prototype of your system design.

Note Your Student Version of MATLAB & Simulink includes a
comprehensive demo version of Stateflow.

2

Installation

Installing on Windows 2-2

Installing on Linux 2-7

2 Installation

2-2

Installing on Windows

System Requirements

Note For the most up-to-date information about system requirements, see
the system requirements page, available in the Products area at the
MathWorks Web site (www.mathworks.com).

MATLAB and Simulink

• Intel-based Pentium, Pentium Pro, Pentium II, Pentium III, or AMD Athlon
personal computer

• Microsoft Windows 95, Windows 98, Windows 2000, Windows Me, or
Windows NT 4.0 (with Service Pack 5 or 6a)

• CD-ROM drive for installation, program execution, and online
documentation

• Disk space varies depending on size of partition. The MathWorks Installer
will inform you of the disk space requirement for your particular partition.

• 64 MB RAM minimum; 128 MB RAM strongly recommended

• 8-bit graphics adapter and display (for 256 simultaneous colors)

• Netscape Navigator 4.0 or higher or Microsoft Internet Explorer 4.0 or
higher is required.

Other recommended items include:

• Microsoft Windows supported graphics accelerator card

• Microsoft Windows supported printer

• Microsoft Windows supported sound card

• Microsoft Word 7.0 (Office 95), or 8.0 (Office 97), or Office 2000 is required to
run the MATLAB Notebook.

Adobe Acrobat Reader is required to view and print the MATLAB online
documentation that is in PDF format.

Installing on Windows

2-3

MEX-Files
MEX-files are dynamically linked subroutines that MATLAB can
automatically load and execute. They provide a mechanism by which you can
call your own C and Fortran subroutines from MATLAB as if they were built-in
functions.

For More Information “External Interfaces/API” provides information on
how to write MEX-files. “External Interfaces/API Reference” describes the
collection of API functions. Both of these are available from Help.

If you plan to build your own MEX-files, one of the following is required:

• Borland C/C++ version 5.0 or 5.02

• Borland C++Builder version 3.0, 4.0, or 5.0

• Compaq Visual Fortran version 6.1

• DIGITAL Visual Fortran version 5.0

• Lcc C version 2.4 (included with MATLAB)

• Microsoft Visual C/C++ version 5.0 or 6.0

• Watcom C/C++ version 10.6 or 11

Note For an up-to-date list of all the compilers supported by MATLAB, see
the MathWorks Technical Support Department’s Technical Notes at:

http://www.mathworks.com/support/tech-notes/v5/1600/1601.shtml

2 Installation

2-4

Installing MATLAB
This list summarizes the steps in the standard installation procedure. You can
perform the installation by simply following the instructions in the dialog
boxes presented by the installation program; it walks you through this process.

1 Turn off any virus protection software you have running.

2 Exit any existing copies of MATLAB you have running.

3 Insert the MathWorks product CD into your CD-ROM drive. The
installation program starts automatically when the CD-ROM drive is ready.
You can also run setup.exe from the product CD.

4 Install the Microsoft Java Virtual Machine (JVM), if prompted. The
MathWorks Installer requires the Microsoft JVM.

Note: The Java installation requires a system reboot.

5 View the Welcome screen and review the Software License Agreement.

6 Review the Student Use Policy.

7 Enter your name and school name.

8 To install the complete set of software (MATLAB, Simulink, and the
Symbolic Math Toolbox), make sure all of the components are selected in the
Product List dialog box.

9 Specify the destination directory, that is, the directory where you want to
save the files on your hard drive. To change directories, use the Browse
button.

10 When the installation is complete, verify the installation by starting
MATLAB and running one of the demo programs. To start MATLAB,
double-click on the MATLAB icon that the installer creates on your desktop.
To run the demo programs, select Demos from Help.

Note The MathWorks documentation CD must be in your CD-ROM drive to
start MATLAB.

Installing on Windows

2-5

11 Customize any MATLAB environment options, if desired. For example, to
include default definitions or any MATLAB expressions that you want
executed every time MATLAB is invoked, create a file named startup.m in
the $MATLAB\toolbox\local directory. MATLAB executes this file each
time MATLAB is invoked.

12 Perform any additional configuration by typing the appropriate command at
the MATLAB command prompt. For example, to configure the MATLAB
Notebook, type notebook -setup. To configure a compiler to work with the
MATLAB Application Program Interface, type mex -setup.

For More Information The MATLAB Installation Guide for PC provides
additional installation information. This manual is available from Help.

Installing Additional Toolboxes
To purchase additional toolboxes, visit the MathWorks Store at
(www.mathworks.com/store). Once you purchase a toolbox, it is downloaded to
your computer.

When you download a toolbox, you receive an installation program for the
toolbox. To install the toolbox, run the installation program by double-clicking
on its icon. After you successfully install the toolbox, all of its functionality will
be available to you when you start MATLAB.

Note Some toolboxes have ReadMe files associated with them. When you
download the toolbox, check to see if there is a ReadMe file. These files contain
important information about the toolbox and possibly installation and
configuration notes. To view the ReadMe file for a toolbox, use the whatsnew
command.

2 Installation

2-6

Accessing the Online Documentation (Help)
Access the online documentation (Help) directly from your documentation CD.

1 Place the documentation CD in your CD-ROM drive.

2 Select Full Product Family Help from the Help menu in the MATLAB
Command Window. You can also type helpbrowser at the MATLAB prompt.

The Help browser appears.

Installing on Linux

2-7

Installing on Linux

Note The Student Version of MATLAB & Simulink for the Linux platform is
only available in the US and Canada.

System Requirements

Note For the most up-to-date information about system requirements, see
the system requirements page, available in the products area at the
MathWorks Web site (www.mathworks.com).

MATLAB and Simulink

• Intel-based Pentium, Pentium Pro, Pentium II, Pentium III, or AMD Athlon
personal computer

• Linux 2.2.x kernel

- glibc 2.1.x (2.1.2 or higher recommended)

- gcc 2.95.2 (gcc, g++, g77)

- xFree86 3.3.x (3.3.6 or higher recommended)

• X Windows (X11R6)

• 110 MB free disk space for MATLAB, Simulink, and Symbolic Math Toolbox

• 64 MB memory, additional memory strongly recommended

• 64 MB swap space

• CD-ROM drive for installation and online documentation

• 8-bit graphics adapter and display (for 256 simultaneous colors)

• Netscape Navigator 4.0 or higher is required.

Adobe Acrobat Reader is required to view and print the MATLAB online
documentation that is in PDF format.

2 Installation

2-8

MEX-Files
MEX-files are dynamically linked subroutines that MATLAB can
automatically load and execute. They provide a mechanism by which you can
call your own C and Fortran subroutines from MATLAB as if they were built-in
functions.

For More Information “External Interfaces/API” provides information on
how to write MEX-files. “External Interfaces/API Reference” describes the
collection of API functions. Both of these are available from Help.

If you plan to build your own MEX-files, you need an ANSIC C compiler (e.g.,
the GNU C compiler, gcc).

Note For an up-to-date list of all the compilers supported by MATLAB, see
the MathWorks Technical Support Department’s Technical Notes at:

http://www.mathworks.com/support/tech-notes/v5/1600/1601.shtml

Installing MATLAB
The following instructions describe how to install the Student Version of
MATLAB & Simulink on your computer.

Note It is recommended that you log in as root to perform your installation.

Installing the Software
To install the Student Version:

1 If your CD-ROM drive is not accessible to your operating system, you will
need to create a directory to be the mount point for it.

mkdir /cdrom

2 Place the MathWorks product CD into the CD-ROM drive.

Installing on Linux

2-9

3 Execute the command to mount the CD-ROM drive on your system. For
example,

mount -t iso9660 /dev/cdrom /cdrom

should work on most systems. If your /etc/fstab file has a line similar to

/dev/cdrom /cdrom iso9660 noauto,ro,user,exec 0 0

then nonroot users can mount the CD-ROM using the simplified command

$ mount /cdrom

Note If the exec option is missing (as it often is by default, for security
reasons), you will receive a “Permission denied” error when attempting to run
the install script. To remedy this, either use the full mount command shown
above (as root) or add the exec option to the file /etc/fstab.

4 Move to the installation location using the cd command. For example, if you
are going to install into the location /usr/local/matlab6, use the
commands

cd /usr/local
mkdir matlab6
cd matlab6

Subsequent instructions in this section refer to this directory as $MATLAB.

5 Run the CD install script.

/cdrom/install_glnx86.sh

The welcome screen appears. Select OK to proceed with the installation.

Note If you need additional help on any step during this installation process,
click the Help button at the bottom of the dialog box.

2 Installation

2-10

6 Accept or reject the software licensing agreement displayed. If you accept
the terms of the agreement, you may proceed with the installation.

7 The MATLAB Root Directory screen is displayed. Select OK if the
pathname for the MATLAB root directory is correct; otherwise, change it to
the desired location.

8 The system displays your license file. Press OK.

Installing on Linux

2-11

9 The installation program displays the Product Installation Options
screen, which is similar to this.

The products you are licensed to install are listed in the Items to install list
box. The right list box displays the products that you do not want to install.
To install the complete Student Version of MATLAB & Simulink, you must
install all the products for which you are licensed (MATLAB, MATLAB
Toolbox, MATLAB Kernel, Simulink, and Symbolic Math Toolbox). Select
OK.

2 Installation

2-12

10 The installation program displays the Installation Data screen.

Specify the directory location in your file system for symbolic links to the
matlab and mex scripts. Choose a directory such as /usr/local/bin. You
must be logged in as root to do this.

Select OK to continue.

11 The Begin Product Installation screen is displayed. Select OK to start the
installation. After the installation is complete, the Product Installation
Complete screen is displayed, assuming your installation is successful.
Select Exit to exit from the setup program.

12 You must edit the docopt.m M-file located in the $MATLAB/toolbox/local
directory to specify the path to the online documentation (Help). For
example, if /cdrom is the path to your CD-ROM drive, then you would use
/cdrom/help. To set the path using this example, change the lines in the
if isunix block in the docopt.m file to

if isunix % UNIX
% doccmd = '';
% options = '';

docpath = '/cdrom/help';

The docopt.m file also allows you to specify an alternative Web browser or
additional initial browser options. It is configured for Netscape Navigator.

Installing on Linux

2-13

13 If desired, customize any MATLAB environment options. For example, to
include default definitions or any MATLAB expressions that you want
executed every time MATLAB is invoked, create a file named startup.m in
the $MATLAB/toolbox/local directory. MATLAB executes this file each
time MATLAB is invoked.

14 Start MATLAB by entering the matlab command. If you did not set up
symbolic links in a directory on your path, type $MATLAB/bin/matlab.

Post Installation Procedures

Successful Installation
If you want to use the MATLAB Application Program Interface, you must
configure the mex script to work with your compiler. Also, some toolboxes may
require some additional configuration. For more information, see “Installing
Additional Toolboxes” later in this section.

Unsuccessful Installation
If MATLAB does not execute correctly after installation:

1 Check the “R12 Release Notes” for the latest information concerning
installation. This document is accessible from Help.

2 Repeat the installation procedure from the beginning but run the CD install
script using the -t option.

/cdrom/install_glnx86.sh -t

For More Information The MATLAB Installation Guide for UNIX provides
additional installation information. This manual is available from Help.

Installing Additional Toolboxes
To purchase additional toolboxes, visit the MathWorks Store at
(www.mathworks.com/store). Once you purchase a toolbox, it is downloaded to
your computer. When you download a toolbox on Linux, you receive a tar file (a
standard, compressed formatted file).

2 Installation

2-14

To install the toolbox, you must:

1 Place the tar file in $MATLAB and un-tar it.

tar -xf filename

2 Run install.

After you successfully install the toolbox, all of its functionality will be
available to you when you start MATLAB.

Note Some toolboxes have ReadMe files associated with them. When you
download the toolbox, check to see if there is a ReadMe file. These files contain
important information about the toolbox and possibly installation and
configuration notes. To view the ReadMe file for a toolbox, use the whatsnew
command.

Accessing the Online Documentation (Help)
Access the online documentation (Help) directly from your documentation CD.

1 Place the documentation CD in your CD-ROM drive and mount it.

2 Select Full Product Family Help from the Help menu in the MATLAB
Command Window. You can also type helpbrowser at the MATLAB prompt.

The Help browser appears.

Installing on Linux

2-15

2 Installation

2-16

3
Development
Environment

Introduction . 3-2

Starting and Quitting MATLAB 3-3

MATLAB Desktop 3-4

Desktop Tools 3-6

Other Development Environment Features 3-15

3 Development Environment

3-2

Introduction
This chapter provides a brief introduction to starting and quitting MATLAB,
and the tools and functions that help you to work with MATLAB variables and
files. For more information about the topics covered here, see the corresponding
topics under “Development Environment” in the MATLAB documentation,
which is available online.

Starting and Quitting MATLAB

3-3

Starting and Quitting MATLAB

Starting MATLAB
On a Microsoft Windows platform, to start MATLAB, double-click the
MATLAB shortcut icon on your Windows desktop.

On Linux, to start MATLAB, type matlab at the operating system prompt.

Note On the Microsoft Windows platform, the documentation CD must be in
your CD-ROM drive to start MATLAB. On both platforms, the documentation
CD must be in your CD-ROM drive to access the online documentation.

After starting MATLAB, the MATLAB desktop opens – see “MATLAB
Desktop” on page 3-4.

You can change the directory in which MATLAB starts, define startup options
including running a script upon startup, and reduce startup time in some
situations.

Quitting MATLAB
To end your MATLAB session, select Exit MATLAB from the File menu in the
desktop, or type quit in the Command Window. To execute specified functions
each time MATLAB quits, such as saving the workspace, you can create and
run a finish.m script.

3 Development Environment

3-4

MATLAB Desktop
When you start MATLAB, the MATLAB desktop appears, containing tools
(graphical user interfaces) for managing files, variables, and applications
associated with MATLAB.

The first time MATLAB starts, the desktop appears as shown in the following
illustration, although your Launch Pad may contain different entries.

View or change
current
directory.

View or use previously run functions.

Enter
MATLAB
functions.

Close window.

Drag the separator bar to resize windows.

Click to move window
outside of desktop.

Get help.Expand to view
documentation, demos, and
tools for your products.

Use tabs to go to Workspace browser
or Current Directory browser.

MATLAB Desktop

3-5

You can change the way your desktop looks by opening, closing, moving, and
resizing the tools in it. You can also move tools outside of the desktop or return
them back inside the desktop (docking). All the desktop tools provide common
features such as context menus and keyboard shortcuts.

You can specify certain characteristics for the desktop tools by selecting
Preferences from the File menu. For example, you can specify the font
characteristics for Command Window text. For more information, click the
Help button in the Preferences dialog box.

3 Development Environment

3-6

Desktop Tools
This section provides an introduction to MATLAB’s desktop tools. You can also
use MATLAB functions to perform most of the features found in the desktop
tools. The tools are:

• “Command Window” on page 3-6

• “Command History” on page 3-7

• “Launch Pad” on page 3-8

• “Help Browser” on page 3-8

• “Current Directory Browser” on page 3-11

• “Workspace Browser” on page 3-12

• “Array Editor” on page 3-13

• “Editor/Debugger” on page 3-14

Command Window
Use the Command Window to enter variables and run functions and M-files.
For more information on controlling input and output, see “Controlling
Command Window Input and Output” on page 4-28.

Type functions and
variables at the
MATLAB prompt.

MATLAB displays the
results.

Desktop Tools

3-7

Command History
Lines you enter in the Command Window are logged in the Command History
window. In the Command History, you can view previously used functions, and
copy and execute selected lines.

To save the input and output from a MATLAB session to a file, use the diary
function.

Note If other users share the same machine with you, using the same log in
information, then they will have access to the functions you ran during a
session via the Command History. If you do not want other users to have
access to the Command History from your session, select Clear Command
History from the Edit menu before you quit MATLAB.

Running External Programs
You can run external programs from the MATLAB Command Window. The
exclamation point character ! is a shell escape and indicates that the rest of the
input line is a command to the operating system. This is useful for invoking

Timestamp marks the
start of each session.

Select one or more lines
and right-click to copy,
evaluate, or create an
M-file from the selection.

3 Development Environment

3-8

utilities or running other programs without quitting MATLAB. On Linux, for
example,

!emacs magik.m

invokes an editor called emacs for a file named magik.m. When you quit the
external program, the operating system returns control to MATLAB.

Launch Pad
MATLAB’s Launch Pad provides easy access to tools, demos, and
documentation.

Help Browser
Use the Help browser to search and view documentation for all MathWorks
products. The Help browser is a Web browser integrated into the MATLAB
desktop that displays HTML documents.

Click + to show the listing for a product.

Help - double-click to go directly to
documentation for the product.

Demos - double-click to display the demo
launcher for the product.

Tools - double-click to open the tool.

Sample of listings in Launch Pad – you’ll see listings
for all products installed on your system.

Desktop Tools

3-9

To open the Help browser, click the help button in the toolbar, or type
helpbrowser in the Command Window.

The Help browser consists of two panes, the Help Navigator, which you use to
find information, and the display pane, where you view the information.

Tabs in the Help Navigator pane provide different ways to find documentation.

Drag the separator bar to adjust the width of the panes.

View documentation in the display pane.

Use the close box to hide the pane.

3 Development Environment

3-10

Help Navigator
Use to Help Navigator to find information. It includes:

• Product filter – Set the filter to show documentation only for the products
you specify.

Note In the Student Version of MATLAB & Simulink, the product filter is
initially set to display a subset of the entire documentation set. You can add or
delete which product documentation is displayed by using the product filter.

• Contents tab – View the titles and tables of contents of documentation for
your products.

• Index tab – Find specific index entries (selected keywords) in the
MathWorks documentation for your products.

• Search tab – Look for a specific phrase in the documentation. To get help for
a specific function, set the Search type to Function Name.

• Favorites tab – View a list of documents you previously designated as
favorites.

Display Pane
After finding documentation using the Help Navigator, view it in the display
pane. While viewing the documentation, you can:

• Browse to other pages – Use the arrows at the tops and bottoms of the pages,
or use the back and forward buttons in the toolbar.

• Bookmark pages – Click the Add to Favorites button in the toolbar.

• Print pages – Click the print button in the toolbar.

• Find a term in the page – Type a term in the Find in page field in the toolbar
and click Go.

Other features available in the display pane are: copying information,
evaluating a selection, and viewing Web pages.

For More Help
In addition to the Help browser, you can use help functions. To get help for a
specific function, use doc. For example, doc format displays help for the

Desktop Tools

3-11

format function in the Help browser. Other means for getting help include
contacting Technical Support (http://www.mathworks.com/support) and
participating in the newsgroup for MATLAB users, comp.soft-sys.matlab.

Current Directory Browser
MATLAB file operations use the current directory and the search path as
reference points. Any file you want to run must either be in the current
directory or on the search path.

A quick way to view or change the current directory is by using the Current
Directory field in the desktop toolbar as shown below.

To search for, view, open, and make changes to MATLAB-related directories
and files, use the MATLAB Current Directory browser. Alternatively, you can
use the functions dir, cd, and delete.

Use the pathname edit box to view
directories and their contents.

Click the find button to search for content within M-f iles.

Double-click a file
to open it in an
appropriate tool.

View the help
portion of the
selected M-file.

3 Development Environment

3-12

Search Path
To determine how to execute functions you call, MATLAB uses a search path to
find M-files and other MATLAB-related files, which are organized in
directories on your file system. Any file you want to run in MATLAB must
reside in the current directory or in a directory that is on the search path. By
default, the files supplied with MATLAB and MathWorks toolboxes are
included in the search path.

To see which directories are on the search path or to change the search path,
select Set Path from the File menu in the desktop, and use the Set Path dialog
box. Alternatively, you can use the path function to view the search path,
addpath to add directories to the path, and rmpath to remove directories from
the path.

Workspace Browser
The MATLAB workspace consists of the set of variables (named arrays) built
up during a MATLAB session and stored in memory. You add variables to the
workspace by using functions, running M-files, and loading saved workspaces.

To view the workspace and information about each variable, use the
Workspace browser, or use the functions who and whos.

Double-click
a variable to
see and
change its
contents in
the Array
Editor.

Desktop Tools

3-13

To delete variables from the workspace, select the variable and select Delete
from the Edit menu. Alternatively, use the clear function.

The workspace is not maintained after you end the MATLAB session. To save
the workspace to a file that can be read during a later MATLAB session, select
Save Workspace As from the File menu, or use the save function. This saves
the workspace to a binary file called a MAT-file, which has a .mat extension.
There are options for saving to different formats. To read in a MAT-file, select
Import Data from the File menu, or use the load function.

Array Editor
Double-click on a variable in the Workspace browser to see it in the Array
Editor. Use the Array Editor to view and edit a visual representation of one- or
two-dimensional numeric arrays, strings, and cell arrays of strings that are in
the workspace.

Change values of array elements. Change the display format.

Use the tabs to view the variables you have open in the Array Editor.

3 Development Environment

3-14

Editor/Debugger
Use the Editor/Debugger to create and debug M-files, which are programs you
write to run MATLAB functions. The Editor/Debugger provides a graphical
user interface for basic text editing, as well as for M-file debugging.

You can use any text editor to create M-files, such as Emacs, and can use
preferences (accessible from the desktop File menu) to specify that editor as
the default. If you use another editor, you can still use the MATLAB Editor/
Debugger for debugging, or you can use debugging functions, such as dbstop,
which sets a breakpoint.

If you just need to view the contents of an M-file, you can display it in the
Command Window by using the type function.

Set breakpoints
where you want
execution to pause
so you can examine
variables.

Find and replace strings.Comment selected lines and specify indenting style using the Text menu.

Hold the cursor over
a variable and its
current value
appears (known as
a datatip).

Other Development Environment Features

3-15

Other Development Environment Features
Additional development environment features are:

• Importing and Exporting Data – Techniques for bringing data created by
other applications into the MATLAB workspace, including the Import
Wizard, and packaging MATLAB workspace variables for use by other
applications.

• Improving M-File Performance – The Profiler is a tool that measures where
an M-file is spending its time. Use it to help you make speed improvements.

• Interfacing with Source Control Systems – Access your source control system
from within MATLAB, Simulink, and Stateflow.

• Using Notebook – Access MATLAB’s numeric computation and visualization
software from within a word processing environment (Microsoft Word).

3 Development Environment

3-16

4

Getting Started

Matrices and Magic Squares 4-2

Expressions . 4-10

Working with Matrices 4-14

More About Matrices and Arrays 4-18

Controlling Command Window Input and Output . . . 4-28

4 Getting Started

4-2

Matrices and Magic Squares
In MATLAB, a matrix is a rectangular array of numbers. Special meaning is
sometimes attached to 1-by-1 matrices, which are scalars, and to matrices with
only one row or column, which are vectors. MATLAB has other ways of storing
both numeric and nonnumeric data, but in the beginning, it is usually best to
think of everything as a matrix. The operations in MATLAB are designed to be
as natural as possible. Where other programming languages work with
numbers one at a time, MATLAB allows you to work with entire matrices
quickly and easily. A good example matrix, used throughout this book, appears
in the Renaissance engraving Melancholia I by the German artist and amateur
mathematician Albrecht Dürer.

Matrices and Magic Squares

4-3

This image is filled with
mathematical symbolism, and if
you look carefully, you will see a
matrix in the upper right
corner. This matrix is known as
a magic square and was
believed by many in Dürer’s
time to have genuinely magical
properties. It does turn out to
have some fascinating
characteristics worth exploring.

Entering Matrices
The best way for you to get started with MATLAB is to learn how to handle
matrices. Start MATLAB and follow along with each example.

You can enter matrices into MATLAB in several different ways:

• Enter an explicit list of elements.

• Load matrices from external data files.

• Generate matrices using built-in functions.

• Create matrices with your own functions in M-files.

Start by entering Dürer’s matrix as a list of its elements. You have only to
follow a few basic conventions:

• Separate the elements of a row with blanks or commas.

• Use a semicolon, ; , to indicate the end of each row.

• Surround the entire list of elements with square brackets, [].

To enter Dürer’s matrix, simply type in the Command Window

A = [16 3 2 13; 5 10 11 8; 9 6 7 12; 4 15 14 1]

4 Getting Started

4-4

MATLAB displays the matrix you just entered,

A =
 16 3 2 13
 5 10 11 8
 9 6 7 12
 4 15 14 1

This exactly matches the numbers in the engraving. Once you have entered the
matrix, it is automatically remembered in the MATLAB workspace. You can
refer to it simply as A. Now that you have A in the workspace, take a look at
what makes it so interesting. Why is it magic?

sum, transpose, and diag
You’re probably already aware that the special properties of a magic square
have to do with the various ways of summing its elements. If you take the sum
along any row or column, or along either of the two main diagonals, you will
always get the same number. Let’s verify that using MATLAB. The first
statement to try is

sum(A)

MATLAB replies with

ans =
 34 34 34 34

When you don’t specify an output variable, MATLAB uses the variable ans,
short for answer, to store the results of a calculation. You have computed a row
vector containing the sums of the columns of A. Sure enough, each of the
columns has the same sum, the magic sum, 34.

How about the row sums? MATLAB has a preference for working with the
columns of a matrix, so the easiest way to get the row sums is to transpose the
matrix, compute the column sums of the transpose, and then transpose the
result. The transpose operation is denoted by an apostrophe or single quote, '.
It flips a matrix about its main diagonal and it turns a row vector into a column
vector. So

A'
produces

Matrices and Magic Squares

4-5

ans =
 16 5 9 4
 3 10 6 15
 2 11 7 14
 13 8 12 1

And

sum(A')'

produces a column vector containing the row sums

ans =
 34
 34
 34
 34

The sum of the elements on the main diagonal is easily obtained with the help
of the diag function, which picks off that diagonal.

diag(A)

produces

ans =
 16
 10
 7
 1

and

sum(diag(A))

produces

ans =
 34

The other diagonal, the so-called antidiagonal, is not so important
mathematically, so MATLAB does not have a ready-made function for it. But a
function originally intended for use in graphics, fliplr, flips a matrix from left
to right.

4 Getting Started

4-6

sum(diag(fliplr(A)))

ans =
 34

You have verified that the matrix in Dürer’s engraving is indeed a magic
square and, in the process, have sampled a few MATLAB matrix operations.
The following sections continue to use this matrix to illustrate additional
MATLAB capabilities.

Subscripts
The element in row i and column j of A is denoted by A(i,j). For example,
A(4,2) is the number in the fourth row and second column. For our magic
square, A(4,2) is 15. So it is possible to compute the sum of the elements in the
fourth column of A by typing

A(1,4) + A(2,4) + A(3,4) + A(4,4)

This produces

ans =
 34

but is not the most elegant way of summing a single column.

It is also possible to refer to the elements of a matrix with a single subscript,
A(k). This is the usual way of referencing row and column vectors. But it can
also apply to a fully two-dimensional matrix, in which case the array is
regarded as one long column vector formed from the columns of the original
matrix. So, for our magic square, A(8) is another way of referring to the value
15 stored in A(4,2).

If you try to use the value of an element outside of the matrix, it is an error.

t = A(4,5)
Index exceeds matrix dimensions.

On the other hand, if you store a value in an element outside of the matrix, the
size increases to accommodate the newcomer.

X = A;
X(4,5) = 17

Matrices and Magic Squares

4-7

X =
 16 3 2 13 0
 5 10 11 8 0
 9 6 7 12 0
 4 15 14 1 17

The Colon Operator
The colon, :, is one of MATLAB’s most important operators. It occurs in several
different forms. The expression

1:10

is a row vector containing the integers from 1 to 10

1 2 3 4 5 6 7 8 9 10

To obtain nonunit spacing, specify an increment. For example,

100:-7:50

is

100 93 86 79 72 65 58 51

and

0:pi/4:pi

is

0 0.7854 1.5708 2.3562 3.1416

Subscript expressions involving colons refer to portions of a matrix.

A(1:k,j)

is the first k elements of the jth column of A. So

sum(A(1:4,4))

computes the sum of the fourth column. But there is a better way. The colon by
itself refers to all the elements in a row or column of a matrix and the keyword
end refers to the last row or column. So

sum(A(:,end))

4 Getting Started

4-8

computes the sum of the elements in the last column of A.

ans =
 34

Why is the magic sum for a 4-by-4 square equal to 34? If the integers from 1 to
16 are sorted into four groups with equal sums, that sum must be

sum(1:16)/4

which, of course, is

ans =
 34

Using the Symbolic Math Toolbox, you can discover that the magic sum for an
n-by-n magic square is .

The magic Function
MATLAB actually has a built-in function that creates magic squares of almost
any size. Not surprisingly, this function is named magic.

B = magic(4)

B =
 16 2 3 13
 5 11 10 8
 9 7 6 12
 4 14 15 1

This matrix is almost the same as the one in the Dürer engraving and has all
the same “magic” properties; the only difference is that the two middle columns
are exchanged. To make this B into Dürer’s A, swap the two middle columns.

A = B(:,[1 3 2 4])

n3 n+() 2⁄

Matrices and Magic Squares

4-9

This says “for each of the rows of matrix B, reorder the elements in the order 1,
3, 2, 4.” It produces

A =
 16 3 2 13
 5 10 11 8
 9 6 7 12
 4 15 14 1

Why would Dürer go to the trouble of rearranging the columns when he could
have used MATLAB’s ordering? No doubt he wanted to include the date of the
engraving, 1514, at the bottom of his magic square.

For More Information “Using MATLAB,” which is accessible from Help,
provides comprehensive material on the development environment,
mathematics, programming and data types, graphics, 3-D visualization,
external interfaces/API, and creating graphical user interfaces in MATLAB.

4 Getting Started

4-10

Expressions
Like most other programming languages, MATLAB provides mathematical
expressions, but unlike most programming languages, these expressions
involve entire matrices. The building blocks of expressions are:

• Variables

• Numbers

• Operators

• Functions

Variables
MATLAB does not require any type declarations or dimension statements.
When MATLAB encounters a new variable name, it automatically creates the
variable and allocates the appropriate amount of storage. If the variable
already exists, MATLAB changes its contents and, if necessary, allocates new
storage. For example,

num_students = 25

creates a 1-by-1 matrix named num_students and stores the value 25 in its
single element.

Variable names consist of a letter, followed by any number of letters, digits, or
underscores. MATLAB uses only the first 31 characters of a variable name.
MATLAB is case sensitive; it distinguishes between uppercase and lowercase
letters. A and a are not the same variable. To view the matrix assigned to any
variable, simply enter the variable name.

Numbers
MATLAB uses conventional decimal notation, with an optional decimal point
and leading plus or minus sign, for numbers. Scientific notation uses the letter
e to specify a power-of-ten scale factor. Imaginary numbers use either i or j as
a suffix. Some examples of legal numbers are

3 -99 0.0001
9.6397238 1.60210e-20 6.02252e23
1i -3.14159j 3e5i

Expressions

4-11

All numbers are stored internally using the long format specified by the IEEE
floating-point standard. Floating-point numbers have a finite precision of
roughly 16 significant decimal digits and a finite range of roughly 10-308 to
10+308.

Operators
Expressions use familiar arithmetic operators and precedence rules.

Functions
MATLAB provides a large number of standard elementary mathematical
functions, including abs, sqrt, exp, and sin. Taking the square root or
logarithm of a negative number is not an error; the appropriate complex result
is produced automatically. MATLAB also provides many more advanced
mathematical functions, including Bessel and gamma functions. Most of these
functions accept complex arguments. For a list of the elementary mathematical
functions, type

help elfun

+ Addition

- Subtraction

* Multiplication

/ Division

\ Left division (described in “Matrices and Linear
Algebra” in Using MATLAB)

^ Power

' Complex conjugate transpose

() Specify evaluation order

4 Getting Started

4-12

For a list of more advanced mathematical and matrix functions, type

help specfun
help elmat

For More Information Appendix A, “MATLAB Quick Reference,” contains
brief descriptions of the MATLAB functions. Use Help to access complete
descriptions of all the MATLAB functions by category or alphabetically.

Some of the functions, like sqrt and sin, are built-in. They are part of the
MATLAB core so they are very efficient, but the computational details are not
readily accessible. Other functions, like gamma and sinh, are implemented in
M-files. You can see the code and even modify it if you want.

Several special functions provide values of useful constants.

Infinity is generated by dividing a nonzero value by zero, or by evaluating well
defined mathematical expressions that overflow, i.e., exceed realmax.
Not-a-number is generated by trying to evaluate expressions like 0/0 or
Inf-Inf that do not have well defined mathematical values.

The function names are not reserved. It is possible to overwrite any of them
with a new variable, such as

pi 3.14159265…

i Imaginary unit,

j Same as i

eps Floating-point relative precision,

realmin Smallest floating-point number,

realmax Largest floating-point number,

Inf Infinity

NaN Not-a-number

1–

2 52–

2 1022–

2 ε–()21023

Expressions

4-13

eps = 1.e-6

and then use that value in subsequent calculations. The original function can
be restored with

clear eps

Examples of Expressions
You have already seen several examples of MATLAB expressions. Here are a
few more examples, and the resulting values.

rho = (1+sqrt(5))/2
rho =
 1.6180

a = abs(3+4i)
a =
 5

z = sqrt(besselk(4/3,rho-i))
z =
 0.3730+ 0.3214i

huge = exp(log(realmax))
huge =
 1.7977e+308

toobig = pi*huge
toobig =
 Inf

4 Getting Started

4-14

Working with Matrices
This section introduces you to other ways of creating matrices.

Generating Matrices
MATLAB provides four functions that generate basic matrices.

Here are some examples.

Z = zeros(2,4)
Z =
 0 0 0 0
 0 0 0 0

F = 5*ones(3,3)
F =
 5 5 5
 5 5 5
 5 5 5

N = fix(10*rand(1,10))
N =
 4 9 4 4 8 5 2 6 8 0

R = randn(4,4)
R =
 1.0668 0.2944 -0.6918 -1.4410
 0.0593 -1.3362 0.8580 0.5711
 -0.0956 0.7143 1.2540 -0.3999
 -0.8323 1.6236 -1.5937 0.6900

zeros All zeros

ones All ones

rand Uniformly distributed random elements

randn Normally distributed random elements

Working with Matrices

4-15

The load Command
The load command reads binary files containing matrices generated by earlier
MATLAB sessions, or reads text files containing numeric data. The text file
should be organized as a rectangular table of numbers, separated by blanks,
with one row per line, and an equal number of elements in each row. For
example, outside of MATLAB, create a text file containing these four lines.

 16.0 3.0 2.0 13.0
 5.0 10.0 11.0 8.0
 9.0 6.0 7.0 12.0
 4.0 15.0 14.0 1.0

Store the file under the name magik.dat. Then the command

load magik.dat

reads the file and creates a variable, magik, containing our example matrix.

An easy way to read data into MATLAB in many text or binary formats is to
use the Import Wizard.

M-Files
You can create your own matrices using M-files, which are text files containing
MATLAB code. Use the MATLAB Editor or another text editor to create a file
containing the same statements you would type at the MATLAB command
line. Save the file under a name that ends in .m.

For example, create a file containing these five lines.

 A = [...
 16.0 3.0 2.0 13.0
 5.0 10.0 11.0 8.0
 9.0 6.0 7.0 12.0
 4.0 15.0 14.0 1.0];

Store the file under the name magik.m. Then the statement

magik

reads the file and creates a variable, A, containing our example matrix.

4 Getting Started

4-16

Concatenation
Concatenation is the process of joining small matrices to make bigger ones. In
fact, you made your first matrix by concatenating its individual elements. The
pair of square brackets, [], is the concatenation operator. For an example, start
with the 4-by-4 magic square, A, and form

B = [A A+32; A+48 A+16]

The result is an 8-by-8 matrix, obtained by joining the four submatrices.

B =

 16 3 2 13 48 35 34 45
 5 10 11 8 37 42 43 40
 9 6 7 12 41 38 39 44
 4 15 14 1 36 47 46 33
 64 51 50 61 32 19 18 29
 53 58 59 56 21 26 27 24
 57 54 55 60 25 22 23 28
 52 63 62 49 20 31 30 17

This matrix is half way to being another magic square. Its elements are a
rearrangement of the integers 1:64. Its column sums are the correct value for
an 8-by-8 magic square.

sum(B)

ans =
 260 260 260 260 260 260 260 260

But its row sums, sum(B')', are not all the same. Further manipulation is
necessary to make this a valid 8-by-8 magic square.

Deleting Rows and Columns
You can delete rows and columns from a matrix using just a pair of square
brackets. Start with

X = A;

Then, to delete the second column of X, use

X(:,2) = []

Working with Matrices

4-17

This changes X to

X =
 16 2 13
 5 11 8
 9 7 12
 4 14 1

If you delete a single element from a matrix, the result isn’t a matrix anymore.
So, expressions like

X(1,2) = []

result in an error. However, using a single subscript deletes a single element,
or sequence of elements, and reshapes the remaining elements into a row
vector. So

X(2:2:10) = []

results in

X =
 16 9 2 7 13 12 1

4 Getting Started

4-18

More About Matrices and Arrays
This sections shows you more about working with matrices and arrays,
focusing on:

• Linear algebra

• Arrays

• Multivariate data

Linear Algebra
Informally, the terms matrix and array are often used interchangeably. More
precisely, a matrix is a two-dimensional numeric array that represents a linear
transformation. The mathematical operations defined on matrices are the
subject of linear algebra.

Dürer’s magic square

A =
 16 3 2 13
 5 10 11 8
 9 6 7 12
 4 15 14 1

provides several examples that give a taste of MATLAB matrix operations.
You’ve already seen the matrix transpose, A'. Adding a matrix to its transpose
produces a symmetric matrix.

A + A'

ans =
 32 8 11 17
 8 20 17 23
 11 17 14 26
 17 23 26 2

The multiplication symbol, *, denotes the matrix multiplication involving inner
products between rows and columns. Multiplying the transpose of a matrix by
the original matrix also produces a symmetric matrix.

More About Matrices and Arrays

4-19

A'*A

ans =
 378 212 206 360
 212 370 368 206
 206 368 370 212
 360 206 212 378

The determinant of this particular matrix happens to be zero, indicating that
the matrix is singular.

d = det(A)

d =
 0

The reduced row echelon form of A is not the identity.

R = rref(A)

R =
 1 0 0 1
 0 1 0 -3
 0 0 1 3
 0 0 0 0

Since the matrix is singular, it does not have an inverse. If you try to compute
the inverse with

X = inv(A)

you will get a warning message

Warning: Matrix is close to singular or badly scaled.
 Results may be inaccurate. RCOND = 1.175530e-017.

Roundoff error has prevented the matrix inversion algorithm from detecting
exact singularity. But the value of rcond, which stands for reciprocal condition
estimate, is on the order of eps, the floating-point relative precision, so the
computed inverse is unlikely to be of much use.

4 Getting Started

4-20

The eigenvalues of the magic square are interesting.

e = eig(A)

e =
 34.0000
 8.0000
 0.0000
 -8.0000

One of the eigenvalues is zero, which is another consequence of singularity.
The largest eigenvalue is 34, the magic sum. That’s because the vector of all
ones is an eigenvector.

v = ones(4,1)

v =
 1
 1
 1
 1

A*v

ans =
 34
 34
 34
 34

When a magic square is scaled by its magic sum,

P = A/34

the result is a doubly stochastic matrix whose row and column sums are all one.

P =
 0.4706 0.0882 0.0588 0.3824
 0.1471 0.2941 0.3235 0.2353
 0.2647 0.1765 0.2059 0.3529
 0.1176 0.4412 0.4118 0.0294

More About Matrices and Arrays

4-21

Such matrices represent the transition probabilities in a Markov process.
Repeated powers of the matrix represent repeated steps of the process. For our
example, the fifth power

P^5

is

 0.2507 0.2495 0.2494 0.2504
 0.2497 0.2501 0.2502 0.2500
 0.2500 0.2498 0.2499 0.2503
 0.2496 0.2506 0.2505 0.2493

This shows that as approaches infinity, all the elements in the th power,
, approach .

Finally, the coefficients in the characteristic polynomial

poly(A)

are

 1 -34 -64 2176 0

This indicates that the characteristic polynomial

is

The constant term is zero, because the matrix is singular, and the coefficient of
the cubic term is -34, because the matrix is magic!

For More Information All of the MATLAB math functions are described in
the “MATLAB Function Reference,” which is accessible from Help.

Arrays
When they are taken away from the world of linear algebra, matrices become
two dimensional numeric arrays. Arithmetic operations on arrays are done
element-by-element. This means that addition and subtraction are the same

k k
pk 1 4⁄

det A λI–()

λ4 34λ3
– 64λ2

– 2176λ+

4 Getting Started

4-22

for arrays and matrices, but that multiplicative operations are different.
MATLAB uses a dot, or decimal point, as part of the notation for multiplicative
array operations.

The list of operators includes:

If the Dürer magic square is multiplied by itself with array multiplication

A.*A

the result is an array containing the squares of the integers from 1 to 16, in an
unusual order.

ans =
 256 9 4 169
 25 100 121 64
 81 36 49 144
 16 225 196 1

Building Tables
Array operations are useful for building tables. Suppose n is the column vector

n = (0:9)';

Then

pows = [n n.^2 2.^n]

+ Addition

- Subtraction

.* Element-by-element multiplication

./ Element-by-element division

.\ Element-by-element left division

.^ Element-by-element power

.' Unconjugated array transpose

More About Matrices and Arrays

4-23

builds a table of squares and powers of two.

pows =
 0 0 1
 1 1 2
 2 4 4
 3 9 8
 4 16 16
 5 25 32
 6 36 64
 7 49 128
 8 64 256
 9 81 512

The elementary math functions operate on arrays element by element. So

format short g
x = (1:0.1:2)';
logs = [x log10(x)]

builds a table of logarithms.

 logs =
 1.0 0
 1.1 0.04139
 1.2 0.07918
 1.3 0.11394
 1.4 0.14613
 1.5 0.17609
 1.6 0.20412
 1.7 0.23045
 1.8 0.25527
 1.9 0.27875
 2.0 0.30103

Multivariate Data
MATLAB uses column-oriented analysis for multivariate statistical data. Each
column in a data set represents a variable and each row an observation. The
(i,j)th element is the ith observation of the jth variable.

4 Getting Started

4-24

As an example, consider a data set with three variables:

• Heart rate

• Weight

• Hours of exercise per week

For five observations, the resulting array might look like

D =
 72 134 3.2
 81 201 3.5
 69 156 7.1
 82 148 2.4
 75 170 1.2

The first row contains the heart rate, weight, and exercise hours for patient 1,
the second row contains the data for patient 2, and so on. Now you can apply
many of MATLAB’s data analysis functions to this data set. For example, to
obtain the mean and standard deviation of each column:

mu = mean(D), sigma = std(D)

mu =
75.8 161.8 3.48

sigma =
5.6303 25.499 2.2107

For a list of the data analysis functions available in MATLAB, type

help datafun

If you have access to the Statistics Toolbox, type

help stats

Scalar Expansion
Matrices and scalars can be combined in several different ways. For example,
a scalar is subtracted from a matrix by subtracting it from each element. The
average value of the elements in our magic square is 8.5, so

B = A - 8.5

More About Matrices and Arrays

4-25

forms a matrix whose column sums are zero.

B =
 7.5 -5.5 -6.5 4.5
 -3.5 1.5 2.5 -0.5
 0.5 -2.5 -1.5 3.5
 -4.5 6.5 5.5 -7.5

sum(B)

ans =
 0 0 0 0

With scalar expansion, MATLAB assigns a specified scalar to all indices in a
range. For example,

B(1:2,2:3) = 0

zeros out a portion of B

B =
 7.5 0 0 4.5
 -3.5 0 0 -0.5
 0.5 -2.5 -1.5 3.5
 -4.5 6.5 5.5 -7.5

Logical Subscripting
The logical vectors created from logical and relational operations can be used
to reference subarrays. Suppose X is an ordinary matrix and L is a matrix of the
same size that is the result of some logical operation. Then X(L) specifies the
elements of X where the elements of L are nonzero.

This kind of subscripting can be done in one step by specifying the logical
operation as the subscripting expression. Suppose you have the following set of
data.

x =
 2.1 1.7 1.6 1.5 NaN 1.9 1.8 1.5 5.1 1.8 1.4 2.2 1.6 1.8

The NaN is a marker for a missing observation, such as a failure to respond to
an item on a questionnaire. To remove the missing data with logical indexing,

4 Getting Started

4-26

use finite(x), which is true for all finite numerical values and false for NaN
and Inf.

x = x(finite(x))
x =
 2.1 1.7 1.6 1.5 1.9 1.8 1.5 5.1 1.8 1.4 2.2 1.6 1.8

Now there is one observation, 5.1, which seems to be very different from the
others. It is an outlier. The following statement removes outliers, in this case
those elements more than three standard deviations from the mean.

x = x(abs(x-mean(x)) <= 3*std(x))
x =

2.1 1.7 1.6 1.5 1.9 1.8 1.5 1.8 1.4 2.2 1.6 1.8

For another example, highlight the location of the prime numbers in Dürer’s
magic square by using logical indexing and scalar expansion to set the
nonprimes to 0.

A(~isprime(A)) = 0

A =
 0 3 2 13
 5 0 11 0
 0 0 7 0
 0 0 0 0

The find Function
The find function determines the indices of array elements that meet a given
logical condition. In its simplest form, find returns a column vector of indices.
Transpose that vector to obtain a row vector of indices. For example,

k = find(isprime(A))'

picks out the locations, using one-dimensional indexing, of the primes in the
magic square.

k =
 2 5 9 10 11 13

More About Matrices and Arrays

4-27

Display those primes, as a row vector in the order determined by k, with

A(k)

ans =
 5 3 2 11 7 13

When you use k as a left-hand-side index in an assignment statement, the
matrix structure is preserved.

A(k) = NaN

A =
 16 NaN NaN NaN
 NaN 10 NaN 8
 9 6 NaN 12
 4 15 14 1

4 Getting Started

4-28

Controlling Command Window Input and Output
So far, you have been using the MATLAB command line, typing commands and
expressions, and seeing the results printed in the Command Window. This
section describes how to:

• Control the appearance of the output values

• Suppress output from MATLAB commands

• Enter long commands at the command line

• Edit the command line

The format Command
The format command controls the numeric format of the values displayed by
MATLAB. The command affects only how numbers are displayed, not how
MATLAB computes or saves them. Here are the different formats, together
with the resulting output produced from a vector x with components of
different magnitudes.

Note To ensure proper spacing, use a fixed-width font, such as Fixedsys or
Courier.

x = [4/3 1.2345e-6]

format short

1.3333 0.0000

format short e

1.3333e+000 1.2345e-006

format short g

1.3333 1.2345e-006

Controlling Command Window Input and Output

4-29

format long

1.33333333333333 0.00000123450000

format long e

1.333333333333333e+000 1.234500000000000e-006

format long g

1.33333333333333 1.2345e-006

format bank

1.33 0.00

format rat

4/3 1/810045

format hex

3ff5555555555555 3eb4b6231abfd271

If the largest element of a matrix is larger than or smaller than ,
MATLAB applies a common scale factor for the short and long formats.

In addition to the format commands shown above

format compact

suppresses many of the blank lines that appear in the output. This lets you
view more information on a screen or window. If you want more control over
the output format, use the sprintf and fprintf functions.

103 10 3–

4 Getting Started

4-30

Suppressing Output
If you simply type a statement and press Return or Enter, MATLAB
automatically displays the results on screen. However, if you end the line with
a semicolon, MATLAB performs the computation but does not display any
output. This is particularly useful when you generate large matrices. For
example,

A = magic(100);

Entering Long Command Lines
If a statement does not fit on one line, use three periods, ..., followed by
Return or Enter to indicate that the statement continues on the next line. For
example,

s = 1 -1/2 + 1/3 -1/4 + 1/5 - 1/6 + 1/7 ...
 - 1/8 + 1/9 - 1/10 + 1/11 - 1/12;

Blank spaces around the =, +, and - signs are optional, but they improve
readability.

Command Line Editing
Various arrow and control keys on your keyboard allow you to recall, edit, and
reuse commands you have typed earlier. For example, suppose you mistakenly
enter

rho = (1 + sqt(5))/2

You have misspelled sqrt. MATLAB responds with

Undefined function or variable 'sqt'.

Instead of retyping the entire line, simply press the ↑ key. The misspelled
command is redisplayed. Use the ← key to move the cursor over and insert the
missing r. Repeated use of the ↑ key recalls earlier lines. Typing a few
characters and then the ↑ key finds a previous line that begins with those
characters. You can also copy previously executed commands from the
Command History. For more information, see “Command History” on page 3-7.

Controlling Command Window Input and Output

4-31

The list of available command line editing keys is different on different
computers. Experiment to see which of the following keys is available on your
machine. (Many of these keys will be familiar to users of the Emacs editor.)

Tab Completion
MATLAB completes the name of a function, variable, filename, or handle
graphics property if you type the first few letters and then press the Tab key.
If there is a unique name, the name is automatically completed. If there is more
than one name that starts with the letters you typed, press the Tab key again
to see a list of the possibilities.

↑ Ctrl+p Recall previous line

↓ Ctrl+n Recall next line

← Ctrl+b Move back one character

→ Ctrl+f Move forward one character

Ctrl+→ Ctrl+r Move right one word

Ctrl+← Ctrl+l Move left one word

Home Ctrl+a Move to beginning of line

End Ctrl+e Move to end of line

Esc Ctrl+u Clear line

Del Ctrl+d Delete character at cursor

Backspace Ctrl+h Delete character before cursor

Ctrl+k Delete to end of line

4 Getting Started

4-32

5

Graphics

Basic Plotting 5-2

Editing Plots 5-14

Mesh and Surface Plots 5-18

Images . 5-24

Printing Graphics 5-26

Handle Graphics 5-28

Graphics User Interfaces 5-35

Animations . 5-37

5 Graphics

5-2

Basic Plotting
MATLAB has extensive facilities for displaying vectors and matrices as
graphs, as well as annotating and printing these graphs. This section describes
a few of the most important graphics functions and provides examples of some
typical applications.

For More Information “Graphics” and “3-D Visualization” provide in-depth
coverage of MATLAB graphics and visualization tools. Access these from Help.

Creating a Plot
The plot function has different forms, depending on the input arguments. If y
is a vector, plot(y) produces a piecewise linear graph of the elements of y
versus the index of the elements of y. If you specify two vectors as arguments,
plot(x,y) produces a graph of y versus x.

For example, these statements use the colon operator to create a vector of x
values ranging from zero to , compute the sine of these values, and plot the
result.

x = 0:pi/100:2*pi;
y = sin(x);
plot(x,y)

Now label the axes and add a title. The characters \pi create the symbol .

xlabel('x = 0:2\pi')
ylabel('Sine of x')
title('Plot of the Sine Function','FontSize',12)

2π

π

Basic Plotting

5-3

Multiple Data Sets in One Graph
Multiple x-y pair arguments create multiple graphs with a single call to plot.
MATLAB automatically cycles through a predefined (but user settable) list of
colors to allow discrimination between each set of data. For example, these
statements plot three related functions of x, each curve in a separate
distinguishing color.

y2 = sin(x-.25);
y3 = sin(x-.5);
plot(x,y,x,y2,x,y3)

The legend command provides an easy way to identify the individual plots.

legend('sin(x)','sin(x-.25)','sin(x-.5)')

0 1 2 3 4 5 6 7
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x = 0:2π

S
in

e
of

 x

Plot of the Sine Function

5 Graphics

5-4

For More Information See “Defining the Color of Lines for Plotting” in
“Axes Properties” in Help.

Specifying Line Styles and Colors
It is possible to specify color, line styles, and markers (such as plus signs or
circles) when you plot your data using the plot command.

plot(x,y,'color_style_marker')

color_style_marker is a string containing from one to four characters
(enclosed in single quotation marks) constructed from a color, a line style, and
a marker type:

• Color strings are 'c', 'm', 'y', 'r', 'g', 'b', 'w', and 'k'. These correspond
to cyan, magenta, yellow, red, green, blue, white, and black.

0 1 2 3 4 5 6 7
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
sin(x)
sin(x−.25)
sin(x−.5)

Basic Plotting

5-5

• Linestyle strings are '-' for solid, '--' for dashed, ':' for dotted, '-.' for
dash-dot, and 'none' for no line.

• The marker types are '+', 'o', '*', and 'x' and the filled marker types 's'
for square, 'd' for diamond, '^' for up triangle, 'v' for down triangle, '>'
for right triangle, '<' for left triangle, 'p' for pentagram, 'h' for hexagram,
and none for no marker.

You can also edit color, line style, and markers interactively. See “Editing
Plots” on page 5-14 for more information.

Plotting Lines and Markers
If you specify a marker type but not a linestyle, MATLAB draws only the
marker. For example,

plot(x,y,'ks')

plots black squares at each data point, but does not connect the markers with
a line.

The statement

plot(x,y,'r:+')

plots a red dotted line and places plus sign markers at each data point. You
may want to use fewer data points to plot the markers than you use to plot the
lines. This example plots the data twice using a different number of points for
the dotted line and marker plots.

x1 = 0:pi/100:2*pi;
x2 = 0:pi/10:2*pi;
plot(x1,sin(x1),'r:',x2,sin(x2),'r+')

5 Graphics

5-6

For More Information See “Basic Plotting” in Help for more examples of
plotting options.

Imaginary and Complex Data
When the arguments to plot are complex, the imaginary part is ignored except
when plot is given a single complex argument. For this special case, the
command is a shortcut for a plot of the real part versus the imaginary part.
Therefore,

plot(Z)

where Z is a complex vector or matrix, is equivalent to

plot(real(Z),imag(Z))

0 1 2 3 4 5 6 7
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Basic Plotting

5-7

For example,

t = 0:pi/10:2*pi;
plot(exp(i*t),'-o')
axis equal

draws a 20-sided polygon with little circles at the vertices. The command,
axis equal, makes the individual tick mark increments on the x- and y-axes
the same length, which makes this plot more circular in appearance.

Adding Plots to an Existing Graph
The hold command enables you to add plots to an existing graph. When you
type

hold on

MATLAB does not replace the existing graph when you issue another plotting
command; it adds the new data to the current graph, rescaling the axes if
necessary.

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

5 Graphics

5-8

For example, these statements first create a contour plot of the peaks function,
then superimpose a pseudocolor plot of the same function.

[x,y,z] = peaks;
contour(x,y,z,20,'k')
hold on
pcolor(x,y,z)
shading interp
hold off

The hold on command causes the pcolor plot to be combined with the contour
plot in one figure.

For More Information See “Creating Specialized Plots” in Help for
information on a variety of graph types.

Basic Plotting

5-9

Figure Windows
Graphing functions automatically open a new figure window if there are no
figure windows already on the screen. If a figure window exists, MATLAB uses
that window for graphics output. If there are multiple figure windows open,
MATLAB targets the one that is designated the “current figure” (the last figure
used or clicked in).

To make an existing figure window the current figure, you can click the mouse
while the pointer is in that window or you can type

figure(n)

where n is the number in the figure title bar. The results of subsequent
graphics commands are displayed in this window.

To open a new figure window and make it the current figure, type

figure

Clearing the Figure for a New Plot
When a figure already exists, most plotting commands clear the axes and use
this figure to create the new plot. However, these commands do not reset figure
properties, such as the background color or the colormap. If you have set any
figure properties in the previous plot, you may want to use the clf command
with the reset option,

clf reset

before creating your new plot to set the figure’s properties to their defaults.

For More Information See “Figure Properties” and the reference page for
the figure command in Help. See “Controlling Graphics Output” for
information on how to control property resetting in your graphics programs.

Multiple Plots in One Figure
The subplot command enables you to display multiple plots in the same
window or print them on the same piece of paper. Typing

subplot(m,n,p)

5 Graphics

5-10

partitions the figure window into an m-by-nmatrix of small subplots and selects
the pth subplot for the current plot. The plots are numbered along first the top
row of the figure window, then the second row, and so on. For example, these
statements plot data in four different subregions of the figure window.

t = 0:pi/10:2*pi;
[X,Y,Z] = cylinder(4*cos(t));
subplot(2,2,1); mesh(X)
subplot(2,2,2); mesh(Y)
subplot(2,2,3); mesh(Z)
subplot(2,2,4); mesh(X,Y,Z)

Controlling the Axes
The axis command supports a number of options for setting the scaling,
orientation, and aspect ratio of plots. You can also set these options
interactively. See “Editing Plots” on page 5-14 for more information.

Basic Plotting

5-11

Setting Axis Limits
By default, MATLAB finds the maxima and minima of the data to choose the
axis limits to span this range. The axis command enables you to specify your
own limits

axis([xmin xmax ymin ymax])

or for three-dimensional graphs,

axis([xmin xmax ymin ymax zmin zmax])

Use the command

axis auto

to re-enable MATLAB’s automatic limit selection.

Setting Axis Aspect Ratio
axis also enables you to specify a number of predefined modes. For example,

axis square

makes the x-axes and y-axes the same length.

axis equal

makes the individual tick mark increments on the x- and y-axes the same
length. This means

plot(exp(i*[0:pi/10:2*pi]))

followed by either axis square or axis equal turns the oval into a proper
circle.

axis auto normal

returns the axis scaling to its default, automatic mode.

Setting Axis Visibility
You can use the axis command to make the axis visible or invisible.

axis on

makes the axis visible. This is the default.

axis off

5 Graphics

5-12

makes the axis invisible.

Setting Grid Lines
The grid command toggles grid lines on and off. The statement

grid on

turns the grid lines on and

grid off

turns them back off again.

For More Information See the axis and axes reference pages and “Axes
Properties” in Help.

Axis Labels and Titles
The xlabel, ylabel, and zlabel commands add x-, y-, and z-axis labels. The
title command adds a title at the top of the figure and the text function
inserts text anywhere in the figure. A subset of TeX notation produces Greek
letters. You can also set these options interactively. See “Editing Plots” on
page 5-14 for more information.

t = -pi:pi/100:pi;
y = sin(t);
plot(t,y)
axis([-pi pi -1 1])
xlabel('-\pi \leq {\itt} \leq \pi')
ylabel('sin(t)')
title('Graph of the sine function')
text(1,-1/3,'{\itNote the odd symmetry.}')

Basic Plotting

5-13

For More Information See “Formatting Graphs” in Help for additional
information on adding labels and annotations to your graphs.

Saving a Figure
To save a figure, select Save from the File menu. The figure is saved as a
FIG-file, which you can load using the open or hgload commands.

Formats for Importing into Other Applications
You can export the figure as a standard graphics format, such as TIFF, for use
with other applications. To do this, select Export from the File menu. You can
also export figures from the command line using the saveas and print
commands.

−3 −2 −1 0 1 2 3
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−π ≤ t ≤ π

si
n(

t)

Graph of the sine function

Note the odd symmetry.

5 Graphics

5-14

Editing Plots
MATLAB formats a graph to provide readability, setting the scale of axes,
including tick marks on the axes, and using color and line style to distinguish
the plots in the graph. However, if you are creating presentation graphics, you
may want to change this default formatting or add descriptive labels, titles,
legends and other annotations to help explain your data.

MATLAB supports two ways to edit the plots you create:

• Using the mouse to select and edit objects interactively

• Using MATLAB functions at the command-line or in an M-file

Interactive Plot Editing
If you enable plot editing mode in the MATLAB figure window, you can perform
point-and-click editing of the objects in your graph. In this mode, you select the
object or objects you want to edit by double-clicking on it. This starts the
Property Editor, which provides access to properties of the object that control
its appearance and behavior.

For more information about interactive editing, see “Using Plot Editing Mode”
on page 5-15. For information about editing object properties in plot editing
mode, see “Using the Property Editor” on page 5-16.

Note Plot editing mode provides an alternative way to access the properties
of MATLAB graphic objects. However, you can only access a subset of object
properties through this mechanism. You may need to use a combination of
interactive editing and command line editing to achieve the effect you desire.

Using Functions to Edit Graphs
If you prefer to work from the MATLAB command line or if you are creating an
M-file, you can use MATLAB commands to edit the graphs you create. Taking
advantage of MATLAB’s Handle Graphics system, you can use the set and get
commands to change the properties of the objects in a graph. For more
information about using command line, see “Handle Graphics” on page 5-28.

Editing Plots

5-15

Using Plot Editing Mode
The MATLAB figure window supports a point-and-click style editing mode that
you can use to customize the appearance of your graph. The following
illustration shows a figure window with plot editing mode enabled and labels
the main plot editing mode features.

Click this button to start plot
edit mode.

Use the Edit, Insert, and Tools
menus to add objects or edit
existing objects in the graph.

Double-click on an object to
select it.

Position labels, legends, and
other objects by clicking and
dragging them.

Access object-specif ic plot
edit functions through
context-sensitive pop-up
menus.

Use these toolbar buttons to add text, arrows, and lines to a graph.

5 Graphics

5-16

Using the Property Editor
In plot editing mode, you can use a graphical user interface, called the Property
Editor, to edit the properties of objects in the graph. The Property Editor
provides access to many properties of the root, figure, axes, line, light, patch,
image, surfaces rectangle, and text objects. For example, using the Property
Editor, you can change the thickness of a line, add titles and axes labels, add
lights, and perform many other plot editing tasks.

This figure shows the components of the Property Editor interface.

Use these buttons to move back and forth among the graphics objects you have edited.

Click Help to get information about
particular properties.

Use the navigation bar to select
the object you want to edit.

Click on a tab to view a group
of properties.

Click here to view a list of
values for this f ield.

Check this checkbox to see the
effect of your changes as you
make them.

Click OK to apply your changes
and dismiss the Property Editor.

Click Cancel to dismiss the Property Editor
without applying your changes.

Click Apply to apply your changes
without dismissing the Property Editor.

Editing Plots

5-17

Starting the Property Editor
You start the Property Editor by double-clicking on an object in a graph, such
as a line, or by right-clicking on an object and selecting the Properties option
from the object’s context menu.

You can also start the Property Editor by selecting either the Figure
Properties, Axes Properties, or Current Object Properties from the figure
window Edit menu. These options automatically enable plot editing mode, if it
is not already enabled.

Once you start the Property Editor, keep it open throughout an editing session.
It provides access to all the objects in the graph. If you click on another object
in the graph, the Property Editor displays the set of panels associated with that
object type. You can also use the Property Editor’s navigation bar to select an
object in the graph to edit.

To save a figure, select Save from the File menu. To save it using a graphics
format, such as TIFF, for use with other applications, select Export from the
File menu. You can also save from the command line – use the saveas
command, including any options to save the figure in a different format.

5 Graphics

5-18

Mesh and Surface Plots
MATLAB defines a surface by the z-coordinates of points above a grid in the x-y
plane, using straight lines to connect adjacent points. The mesh and surf
plotting functions display surfaces in three dimensions. mesh produces
wireframe surfaces that color only the lines connecting the defining points.
surf displays both the connecting lines and the faces of the surface in color.

Visualizing Functions of Two Variables
To display a function of two variables, z = f (x,y):

• Generate X and Y matrices consisting of repeated rows and columns,
respectively, over the domain of the function.

• Use X and Y to evaluate and graph the function.

The meshgrid function transforms the domain specified by a single vector or
two vectors x and y into matrices X and Y for use in evaluating functions of two
variables. The rows of X are copies of the vector x and the columns of Y are
copies of the vector y.

Example – Graphing the sinc Function
This example evaluates and graphs the two-dimensional sinc function, sin(r)/r,
between the x and y directions. R is the distance from origin, which is at the
center of the matrix. Adding eps (a MATLAB command that returns the
smallest floating-point number on your system) avoids the indeterminate 0/0
at the origin.

[X,Y] = meshgrid(-8:.5:8);
R = sqrt(X.^2 + Y.^2) + eps;
Z = sin(R)./R;
mesh(X,Y,Z,'EdgeColor','black')

Mesh and Surface Plots

5-19

By default, MATLAB colors the mesh using the current colormap. However,
this example uses a single-colored mesh by specifying the EdgeColor surface
property. See the surface reference page for a list of all surface properties.

You can create a transparent mesh by disabling hidden line removal.

hidden off

See the hidden reference page for more information on this option.

Example – Colored Surface Plots
A surface plot is similar to a mesh plot except the rectangular faces of the
surface are colored. The color of the faces is determined by the values of Z and
the colormap (a colormap is an ordered list of colors). These statements graph
the sinc function as a surface plot, select a colormap, and add a color bar to
show the mapping of data to color.

surf(X,Y,Z)
colormap hsv
colorbar

−10

−5

0

5

10

−10

−5

0

5

10
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

5 Graphics

5-20

See the colormap reference page for information on colormaps.

For More Information See “Creating 3-D Graphs” in Help for more
information on surface plots.

Transparent Surfaces
You can make the faces of a surface transparent to a varying degree.
Transparency (referred to as the alpha value) can be specified for the whole
object or can be based on an alphamap, which behaves in a way analogous to
colormaps. For example,

surf(X,Y,Z)
colormap hsv
alpha(.4)

−0.2

0

0.2

0.4

0.6

0.8

−10

−5

0

5

10

−10

−5

0

5

10
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Mesh and Surface Plots

5-21

produces a surface with a face alpha value of 0.4. Alpha values range from 0
(completely transparent) to 1 (not transparent).

For More Information See “Transparency” in Help for more information on
using this feature.

Surface Plots with Lighting
Lighting is the technique of illuminating an object with a directional light
source. In certain cases, this technique can make subtle differences in surface
shape easier to see. Lighting can also be used to add realism to
three-dimensional graphs.

This example uses the same surface as the previous examples, but colors it red
and removes the mesh lines. A light object is then added to the left of the
“camera” (that is the location in space from where you are viewing the surface).

surf(X,Y,Z,'FaceColor','red','EdgeColor','none')
camlight left; lighting phong

5 Graphics

5-22

Manipulating the Surface
The Camera Toolbar provides a way to interactively explore 3-D graphics.
Display the toolbar by selecting Camera Toolbar from the figure window's
View menu. Here is the toolbar with the orbit camera tool selected:

The Camera Toolbar enables you to move the camera around the surface object,
zoom, add a light, and perform other viewing operations without issuing
commands. The following picture shows the surface viewed by orbiting the
camera toward the bottom. A scene light has been added to illuminate the
underside of the surface, which is not lit by the light added in the previous
section.

Mesh and Surface Plots

5-23

For More Information See the “Lighting as a Visualization Tool” and “View
Control with the Camera Toolbar” in Help for information on these
techniques.

5 Graphics

5-24

Images
Two-dimensional arrays can be displayed as images, where the array elements
determine brightness or color of the images. For example, the statements

load durer
whos
Name Size Bytes Class

 X 648x509 2638656 double array
 caption 2x28 112 char array
 map 128x3 3072 double array

load the file durer.mat, adding three variables to the workspace. The matrix X
is a 648-by-509 matrix and map is a 128-by-3 matrix that is the colormap for this
image.

Note MAT-files, such as durer.mat, are binary files that can be created on
one platform and later read by MATLAB on a different platform.

The elements of X are integers between 1 and 128, which serve as indices into
the colormap, map. Then

image(X)
colormap(map)
axis image

reproduces Dürer’s etching shown at the beginning of this book. A high
resolution scan of the magic square in the upper right corner is available in
another file. Type

load detail

and then use the uparrow key on your keyboard to reexecute the image,
colormap, and axis commands. The statement

colormap(hot)

adds some unusual coloring to the sixteenth century etching. The function hot
generates a colormap containing shades of reds, oranges, and yellows.

Images

5-25

Typically a given image matrix has a specific colormap associated with it. See
the colormap reference page for a list of other predefined colormaps.

For More Information See “Displaying Bit-Mapped Images” in Help for
information on the image processing capabilities of MATLAB.

5 Graphics

5-26

Printing Graphics
You can print a MATLAB figure directly on a printer connected to your
computer or you can export the figure to one of the standard graphic file
formats supported by MATLAB. There are two ways to print and export
figures:

• Using the Print option under the File menu

• Using the print command

Printing from the Menu
There are four menu options under the File menu that pertain to printing:

• The Page Setup option displays a dialog box that enables you to adjust
characteristics of the figure on the printed page.

• The Print Setup option displays a dialog box that sets printing defaults, but
does not actually print the figure.

• The Print Preview option enables you to view the figure the way it will look
on the printed page.

• The Print option displays a dialog box that lets you select standard printing
options and print the figure.

Generally, use Print Preview to determine whether the printed output is what
you want. If not, use the Page Setup dialog box to change the output settings.
Select the Page Setup dialog box Help button to display information on how to
set up the page.

Exporting Figure to Graphics Files
The Export option under the File menu enables you to export the figure to a
variety of standard graphics file formats.

Using the Print Command
The print command provides more flexibility in the type of output sent to the
printer and allows you to control printing from M-files. The result can be sent
directly to your default printer or stored in a specified file. A wide variety of
output formats, including TIFF, JPEG, and PostScript, is available.

For example, this statement saves the contents of the current figure window as
color Encapsulated Level 2 PostScript in the file called magicsquare.eps. It

Printing Graphics

5-27

also includes a TIFF preview, which enables most word processors to display
the picture

print -depsc2 -tiff magicsquare.eps

To save the same figure as a TIFF file with a resolution of 200 dpi, use the
command

print -dtiff -r200 magicsquare.tiff

If you type print on the command line,

print

MATLAB prints the current figure on your default printer.

For More Information See the print command reference page and “Basic
Printing and Exporting” in Help for more information on printing.

5 Graphics

5-28

Handle Graphics
When you use a plotting command, MATLAB creates the graph using various
graphics objects, such as lines, text, and surfaces (see “Graphics Objects” on
page 5-28 for a complete list). All graphics objects have properties that control
the appearance and behavior of the object. MATLAB enables you to query the
value of each property and set the value of most properties.

Whenever MATLAB creates a graphics object, it assigns an identifier (called a
handle) to the object. You can use this handle to access the object’s properties.
Handle Graphics is useful if you want to:

• Modify the appearance of graphs.

• Create custom plotting commands by writing M-files that create and
manipulate objects directly.

Graphics Objects
Graphics objects are the basic elements used to display graphics and user
interface elements. This table lists the graphics objects.

Object Description

Root Top of the hierarchy corresponding to the computer
screen

Figure Window used to display graphics and user interfaces

Axes Axes for displaying graphs in a figure

Uicontrol User interface control that executes a function in
response to user interaction

Uimenu User-defined figure window menu

Uicontextmenu Pop-up menu invoked by right clicking on a graphics
object

Image Two-dimensional pixel-based picture

Handle Graphics

5-29

Object Hierarchy
The objects are organized in a tree structured hierarchy reflecting their
interdependence. For example, line objects require axes objects as a frame of
reference. In turn, axes objects exist only within figure objects. This diagram
illustrates the tree structure.

Light Light sources that affect the coloring of patch and
surface objects

Line Line used by functions such as plot, plot3, semilogx

Patch Filled polygon with edges

Rectangle Two-dimensional shape varying from rectangles to
ovals

Surface Three-dimensional representation of matrix data
created by plotting the value of the data as heights
above the x-y plane

Text Character string

Object Description

Uimenu

Line

Axes Uicontrol

Image

Figure

Uicontextmenu

Light SurfacePatch Text

Root

Rectangle

5 Graphics

5-30

Creating Objects
Each object has an associated function that creates the object. These functions
have the same name as the objects they create. For example, the text function
creates text objects, the figure function creates figure objects, and so on.
MATLAB’s high-level graphics functions (like plot and surf) call the
appropriate low-level function to draw their respective graphics. For more
information about an object and a description of its properties, see the
reference page for the object’s creation function. Object creation functions have
the same name as the object. For example, the object creation function for axes
objects is called axes.

Commands for Working with Objects
This table lists commands commonly used when working with objects.

For More Information See the “MATLAB Function Reference” in Help for a
description of each of these functions.

Function Purpose

copyobj Copy graphics object

delete Delete an object

findobj Find the handle of objects having specified property values

gca Return the handle of the current axes

gcf Return the handle of the current figure

gco Return the handle of the current object

get Query the value of an objects properties

set Set the value of an objects properties

Handle Graphics

5-31

Setting Object Properties
All object properties have default values. However, you may find it useful to
change the settings of some properties to customize your graph. There are two
ways to set object properties:

• Specify values for properties when you create the object.

• Set the property value on an object that already exists.

For More Information See “Handle Graphics Objects” in Help for
information on graphics objects.

Setting Properties from Plotting Commands
You can specify object property values as arguments to object creation
functions as well as with plotting function, such as plot, mesh, and surf.

For example, plotting commands that create lines or surfaces enable you to
specify property name/property value pairs as arguments. The command

plot(x,y,'LineWidth',1.5)

plots the data in the variables x and y using lines having a LineWidth property
set to 1.5 points (one point = 1/72 inch). You can set any line object property
this way.

Setting Properties of Existing Objects
To modify the property values of existing objects, you can use the set command
or, if plot editing mode is enabled, the Property Editor. The Property Editor
provides a graphical user interface to many object properties. This section
describes how to use the set command. See “Using the Property Editor” on
page 5-16 for more information.

Many plotting commands can return the handles of the objects created so you
can modify the objects using the set command. For example, these statements
plot a five-by-five matrix (creating five lines, one per column) and then set the
Marker to a square and the MarkerFaceColor to green.

h = plot(magic(5));
set(h,'Marker','s',MarkerFaceColor','g')

5 Graphics

5-32

In this case, h is a vector containing five handles, one for each of the five lines
in the plot. The set statement sets the Marker and MarkerFaceColor properties
of all lines to the same values.

Setting Multiple Property Values
If you want to set the properties of each line to a different value, you can use
cell arrays to store all the data and pass it to the set command. For example,
create a plot and save the line handles.

h = plot(magic(5));

Suppose you want to add different markers to each line and color the marker’s
face color to the same color as the line. You need to define two cell arrays – one
containing the property names and the other containing the desired values of
the properties.

The prop_name cell array contains two elements.

prop_name(1) = {'Marker'};
prop_name(2) = {'MarkerFaceColor'};

The prop_values cell array contains 10 values – five values for the Marker
property and five values for the MarkerFaceColor property. Notice that
prop_values is a two-dimensional cell array. The first dimension indicates
which handle in h the values apply to and the second dimension indicates
which property the value is assigned to.

prop_values(1,1) = {'s'};
prop_values(1,2) = {get(h(1),'Color')};
prop_values(2,1) = {'d'};
prop_values(2,2) = {get(h(2),'Color')};
prop_values(3,1) = {'o'};
prop_values(3,2) = {get(h(3),'Color')};
prop_values(4,1) = {'p'};
prop_values(4,2) = {get(h(4),'Color')};
prop_values(5,1) = {'h'};
prop_values(5,2) = {get(h(5),'Color')};

The MarkerFaceColor is always assigned the value of the corresponding line’s
color (obtained by getting the line’s Color property with the get command).

Handle Graphics

5-33

After defining the cell arrays, call set to specify the new property values.

set(h,prop_name,prop_values)

For More Information See “Structures and Cell Arrays” in Help for
information on cell arrays.

Finding the Handles of Existing Objects
The findobj command enables you to obtain the handles of graphics objects by
searching for objects with particular property values. With findobj you can
specify the value of any combination of properties, which makes it easy to pick
one object out of many. For example, you may want to find the blue line with
square marker having blue face color.

1 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10

15

20

25

5 Graphics

5-34

You can also specify which figures or axes to search, if there is more than one.
The following sections provide examples illustrating how to use findobj.

Finding All Objects of a Certain Type
Since all objects have a Type property that identifies the type of object, you can
find the handles of all occurrences of a particular type of object. For example,

h = findobj('Type','line');

finds the handles of all line objects.

Finding Objects with a Particular Property
You can specify multiple properties to narrow the search. For example,

h = findobj('Type','line','Color','r','LineStyle',':');

finds the handles of all red, dotted lines.

Limiting the Scope of the Search
You can specify the starting point in the object hierarchy by passing the handle
of the starting figure or axes as the first argument. For example,

h = findobj(gca,'Type','text','String','\pi/2');

finds the string only within the current axes.

Using findobj as an Argument
Since findobj returns the handles it finds, you can use it in place of the handle
argument. For example,

set(findobj('Type','line','Color','red'),'LineStyle',':')

finds all red lines and sets their line style to dotted.

For More Information See “Accessing Object Handles” in Help for more
information.

π 2⁄

Graphics User Interfaces

5-35

Graphics User Interfaces
Here is a simple example illustrating how to use Handle Graphics to build user
interfaces. The statement

b = uicontrol('Style','pushbutton', ...
 'Units','normalized', ...
 'Position',[.5 .5 .2 .1], ...
 'String','click here');

creates a pushbutton in the center of a figure window and returns a handle to
the new object. But, so far, clicking on the button does nothing. The statement

s = 'set(b,''Position'',[.8*rand .9*rand .2 .1])';

creates a string containing a command that alters the pushbutton’s position.
Repeated execution of

eval(s)

moves the button to random positions. Finally,

set(b,'Callback',s)

installs s as the button’s callback action, so every time you click on the button,
it moves to a new position.

Graphical User Interface Design Tools
MATLAB includes a set of layout tools that simplify the process of creating
graphical user interfaces (GUIs). These tools include:

• Layout Editor – add and arrange objects in the figure window.

• Alignment Tool – align objects with respect to each other.

• Property Inspector – inspect and set property values.

• Object Browser – observe a hierarchical list of the Handle Graphics objects
in the current MATLAB session.

• Menu Editor – create window menus and context menus.

Access these tools from the Layout Editor. To start the Layout Editor, use the
guide command. For example,

guide

5 Graphics

5-36

displays an empty layout.

To load an existing GUI for editing, type (the .fig is not required)

guide mygui.fig

or use Open... from the File menu on the Layout Editor.

For More Information See “Creating Graphical User Interfaces” for more
information.

Animations

5-37

Animations
MATLAB provides two ways of generating moving, animated graphics:

• Continually erase and then redraw the objects on the screen, making
incremental changes with each redraw.

• Save a number of different pictures and then play them back as a movie.

Erase Mode Method
Using the EraseMode property is appropriate for long sequences of simple plots
where the change from frame to frame is minimal. Here is an example showing
simulated Brownian motion. Specify a number of points, such as

n = 20

and a temperature or velocity, such as

s = .02

The best values for these two parameters depend upon the speed of your
particular computer. Generate n random points with (x,y) coordinates between

 and .

x = rand(n,1)-0.5;
y = rand(n,1)-0.5;

Plot the points in a square with sides at -1 and +1. Save the handle for the
vector of points and set its EraseMode to xor. This tells the MATLAB graphics
system not to redraw the entire plot when the coordinates of one point are
changed, but to restore the background color in the vicinity of the point using
an “exclusive or” operation.

h = plot(x,y,'.');
axis([-1 1 -1 1])
axis square
grid off
set(h,'EraseMode','xor','MarkerSize',18)

Now begin the animation. Here is an infinite while loop, which you can
eventually exit by typing Ctrl+c. Each time through the loop, add a small
amount of normally distributed random noise to the coordinates of the points.

1– 2⁄ +1 2⁄

5 Graphics

5-38

Then, instead of creating an entirely new plot, simply change the XData and
YData properties of the original plot.

while 1
 drawnow
 x = x + s*randn(n,1);
 y = y + s*randn(n,1);
 set(h,'XData',x,'YData',y)
end

How long does it take for one of the points to get outside of the square? How
long before all of the points are outside the square?

Creating Movies
If you increase the number of points in the Brownian motion example to
something like n = 300 and s = .02, the motion is no longer very fluid; it takes
too much time to draw each time step. It becomes more effective to save a
predetermined number of frames as bitmaps and to play them back as a movie.

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Animations

5-39

First, decide on the number of frames, say

nframes = 50;

Next, set up the first plot as before, except using the default EraseMode
(normal).

x = rand(n,1)-0.5;
y = rand(n,1)-0.5;
h = plot(x,y,'.');
set(h,'MarkerSize',18);
axis([-1 1 -1 1])
axis square
grid off

Generate the movie and use getframe to capture each frame.

for k = 1:nframes
 x = x + s*randn(n,1);
 y = y + s*randn(n,1);
 set(h,'XData',x,'YData',y)
 M(k) = getframe;
end

Finally, play the movie 30 times.

movie(M,30)

5 Graphics

5-40

6
Programming with
MATLAB

Flow Control 6-2

Other Data Structures 6-7

Scripts and Functions 6-17

Demonstration Programs Included with MATLAB . . . 6-27

6 Programming with MATLAB

6-2

Flow Control
MATLAB has several flow control constructs:

• if statements

• switch statements

• for loops

• while loops

• continue statements

• break statements

For More Information See “Programming and Data Types” in Help for a
complete discussion about programming in MATLAB.

if
The if statement evaluates a logical expression and executes a group of
statements when the expression is true. The optional elseif and else
keywords provide for the execution of alternate groups of statements. An end
keyword, which matches the if, terminates the last group of statements. The
groups of statements are delineated by the four keywords – no braces or
brackets are involved.

MATLAB’s algorithm for generating a magic square of order n involves three
different cases: when n is odd, when n is even but not divisible by 4, or when n
is divisible by 4. This is described by

if rem(n,2) ~= 0
 M = odd_magic(n)
elseif rem(n,4) ~= 0
 M = single_even_magic(n)
else
 M = double_even_magic(n)
end

In this example, the three cases are mutually exclusive, but if they weren’t, the
first true condition would be executed.

Flow Control

6-3

It is important to understand how relational operators and if statements work
with matrices. When you want to check for equality between two variables, you
might use

if A == B, ...

This is legal MATLAB code, and does what you expect when A and B are scalars.
But when A and B are matrices, A == B does not test if they are equal, it tests
where they are equal; the result is another matrix of 0’s and 1’s showing
element-by-element equality. In fact, if A and B are not the same size, then
A == B is an error.

The proper way to check for equality between two variables is to use the
isequal function,

if isequal(A,B), ...

Here is another example to emphasize this point. If A and B are scalars, the
following program will never reach the unexpected situation. But for most
pairs of matrices, including our magic squares with interchanged columns,
none of the matrix conditions A > B, A < B or A == B is true for all elements
and so the else clause is executed.

if A > B
 'greater'
elseif A < B
 'less'
elseif A == B
 'equal'
else
 error('Unexpected situation')
end

Several functions are helpful for reducing the results of matrix comparisons to
scalar conditions for use with if, including

isequal
isempty
all
any

6 Programming with MATLAB

6-4

switch and case
The switch statement executes groups of statements based on the value of a
variable or expression. The keywords case and otherwise delineate the
groups. Only the first matching case is executed. There must always be an end
to match the switch.

The logic of the magic squares algorithm can also be described by

 switch (rem(n,4)==0) + (rem(n,2)==0)
 case 0
 M = odd_magic(n)
 case 1
 M = single_even_magic(n)
 case 2
 M = double_even_magic(n)
 otherwise
 error('This is impossible')
 end

Note Unlike the C language switch statement, MATLAB’s switch does not
fall through. If the first case statement is true, the other case statements do
not execute. So, break statements are not required.

for
The for loop repeats a group of statements a fixed, predetermined number of
times. A matching end delineates the statements.

for n = 3:32
 r(n) = rank(magic(n));
end
r

The semicolon terminating the inner statement suppresses repeated printing,
and the r after the loop displays the final result.

Flow Control

6-5

It is a good idea to indent the loops for readability, especially when they are
nested.

for i = 1:m
 for j = 1:n
 H(i,j) = 1/(i+j);
 end
end

while
The while loop repeats a group of statements an indefinite number of times
under control of a logical condition. A matching end delineates the statements.

Here is a complete program, illustrating while, if, else, and end, that uses
interval bisection to find a zero of a polynomial.

a = 0; fa = -Inf;
b = 3; fb = Inf;
while b-a > eps*b
 x = (a+b)/2;
 fx = x^3-2*x-5;
 if sign(fx) == sign(fa)
 a = x; fa = fx;
 else
 b = x; fb = fx;
 end
end
x

The result is a root of the polynomial , namely

x =
 2.09455148154233

The cautions involving matrix comparisons that are discussed in the section on
the if statement also apply to the while statement.

continue
The continue statement passes control to the next iteration of the for or while
loop in which it appears, skipping any remaining statements in the body of the

x3 2x– 5–

6 Programming with MATLAB

6-6

loop. In nested loops, continue passes control to the next iteration of the for
or while loop enclosing it.

The example below shows a continue loop that counts the lines of code in the
file, magic.m, skipping all blank lines and comments. A continue statement is
used to advance to the next line in magic.m without incrementing the count
whenever a blank line or comment line is encountered.

fid = fopen('magic.m','r');
count = 0;
while ~feof(fid)
 line = fgetl(fid);
 if isempty(line) | strncmp(line,'%',1)
 continue
 end
 count = count + 1;
end
disp(sprintf('%d lines',count));

break
The break statement lets you exit early from a for or while loop. In nested
loops, break exits from the innermost loop only.

Here is an improvement on the example from the previous section. Why is this
use of break a good idea?

a = 0; fa = -Inf;
b = 3; fb = Inf;
while b-a > eps*b
 x = (a+b)/2;
 fx = x^3-2*x-5;
 if fx == 0
 break
 elseif sign(fx) == sign(fa)
 a = x; fa = fx;
 else
 b = x; fb = fx;
 end
end
x

Other Data Structures

6-7

Other Data Structures
This section introduces you to some other data structures in MATLAB,
including:

• Multidimensional arrays

• Cell arrays

• Characters and text

• Structures

For More Information For a complete discussion of MATLAB’s data
structures, see “Programming and Data Types” in Help.

Multidimensional Arrays
Multidimensional arrays in MATLAB are arrays with more than two
subscripts. They can be created by calling zeros, ones, rand, or randn with
more than two arguments. For example,

R = randn(3,4,5);

creates a 3-by-4-by-5 array with a total of 3x4x5 = 60 normally distributed
random elements.

A three-dimensional array might represent three-dimensional physical data,
say the temperature in a room, sampled on a rectangular grid. Or, it might
represent a sequence of matrices, , or samples of a time-dependent matrix,

. In these latter cases, the (i, j)th element of the kth matrix, or the th
matrix, is denoted by A(i,j,k).

MATLAB’s and Dürer’s versions of the magic square of order 4 differ by an
interchange of two columns. Many different magic squares can be generated by
interchanging columns. The statement

p = perms(1:4);

A k()

A t() tk

6 Programming with MATLAB

6-8

generates the 4! = 24 permutations of 1:4. The kth permutation is the row
vector, p(k,:). Then

A = magic(4);
M = zeros(4,4,24);
for k = 1:24
 M(:,:,k) = A(:,p(k,:));
end

stores the sequence of 24 magic squares in a three-dimensional array, M. The
size of M is

size(M)

ans =
 4 4 24

It turns out that the third matrix in the sequence is Dürer’s.

M(:,:,3)

ans =
 16 3 2 13
 5 10 11 8
 9 6 7 12
 4 15 14 1

16 3 2 13

 8 11 10 8

12 7 6 12

 1 14 15 1

16 2 13 3

10 8 11 10

 6 12 7 6

15 1 14 15

13 16 2 3

 8 5 11 10

12 9 7 6

 1 4 14 15

16 2 3 13

 5 11 10 8

 9 7 6 12

 4 14 15 1

...

Other Data Structures

6-9

The statement

sum(M,d)

computes sums by varying the dth subscript. So

sum(M,1)

 is a 1-by-4-by-24 array containing 24 copies of the row vector

34 34 34 34

and

sum(M,2)

is a 4-by-1-by-24 array containing 24 copies of the column vector

34
34
34
34

Finally,

S = sum(M,3)

adds the 24 matrices in the sequence. The result has size 4-by-4-by-1, so it looks
like a 4-by-4 array.

S =
 204 204 204 204
 204 204 204 204
 204 204 204 204
 204 204 204 204

Cell Arrays
Cell arrays in MATLAB are multidimensional arrays whose elements are
copies of other arrays. A cell array of empty matrices can be created with the
cell function. But, more often, cell arrays are created by enclosing a
miscellaneous collection of things in curly braces, {}. The curly braces are also
used with subscripts to access the contents of various cells. For example,

C = {A sum(A) prod(prod(A))}

6 Programming with MATLAB

6-10

produces a 1-by-3 cell array. The three cells contain the magic square, the row
vector of column sums, and the product of all its elements. When C is displayed,
you see

C =
 [4x4 double] [1x4 double] [20922789888000]

This is because the first two cells are too large to print in this limited space, but
the third cell contains only a single number, 16!, so there is room to print it.

Here are two important points to remember. First, to retrieve the contents of
one of the cells, use subscripts in curly braces. For example, C{1} retrieves the
magic square and C{3} is 16!. Second, cell arrays contain copies of other arrays,
not pointers to those arrays. If you subsequently change A, nothing happens to
C.

Three-dimensional arrays can be used to store a sequence of matrices of the
same size. Cell arrays can be used to store a sequence of matrices of different
sizes. For example,

M = cell(8,1);
for n = 1:8
 M{n} = magic(n);
end
M

produces a sequence of magic squares of different order.

M =
 [1]
 [2x2 double]
 [3x3 double]
 [4x4 double]
 [5x5 double]
 [6x6 double]
 [7x7 double]
 [8x8 double]

Other Data Structures

6-11

You can retrieve our old friend with

M{4}

Characters and Text
Enter text into MATLAB using single quotes. For example,

s = 'Hello'

The result is not the same kind of numeric matrix or array we have been
dealing with up to now. It is a 1-by-5 character array.

16 2 3 13

 5 11 10 8

 9 7 6 12

 4 14 15 1

..
.

64 2 3 61 60 6 7 57

 9 55 54 12 13 51 50 16

17 47 46 20 21 43 42 24

40 26 27 37 36 30 31 33

32 34 35 29 28 38 39 25

41 23 22 44 45 19 18 48

49 15 14 52 53 11 10 56

 8 58 59 5 4 62 63 1

1 3

4 2

8 1 6

3 5 7

4 9 2

1

6 Programming with MATLAB

6-12

Internally, the characters are stored as numbers, but not in floating-point
format. The statement

a = double(s)

converts the character array to a numeric matrix containing floating-point
representations of the ASCII codes for each character. The result is

a =
 72 101 108 108 111

The statement

s = char(a)

reverses the conversion.

Converting numbers to characters makes it possible to investigate the various
fonts available on your computer. The printable characters in the basic ASCII
character set are represented by the integers 32:127. (The integers less than
32 represent nonprintable control characters.) These integers are arranged in
an appropriate 6-by-16 array with

F = reshape(32:127,16,6)';

The printable characters in the extended ASCII character set are represented
by F+128. When these integers are interpreted as characters, the result
depends on the font currently being used. Type the statements

char(F)
char(F+128)

and then vary the font being used for the MATLAB Command Window. Select
Preferences from the File menu. Be sure to try the Symbol and Wingdings
fonts, if you have them on your computer. Here is one example of the kind of
output you might obtain.

Other Data Structures

6-13

!"#$%&'()*+,-./
0123456789:;<=>?
@ABCDEFGHIJKLMNO
PQRSTUVWXYZ[\]^_
`abcdefghijklmno
pqrstuvwxyz{|}~

† ¢£§•¶ß®©™´¨ ÆØ
¥ ªº æø

¿¡¬ ƒ «»… ÀÃÕŒœ
-—“”‘’ ÿŸ⁄¤‹›fifl
‡·‚„‰ÂÊÁËÈÍÎÏÌÓÔ
ÒÚÛÙıˆ˜¯˘˙˚¸˝˛ˇ

Concatenation with square brackets joins text variables together into larger
strings. The statement

h = [s, ' world']

joins the strings horizontally and produces

h =
 Hello world

The statement

v = [s; 'world']

joins the strings vertically and produces

v =
 Hello
 world

Note that a blank has to be inserted before the ‘w’ in h and that both words in v
have to have the same length. The resulting arrays are both character arrays;
h is 1-by-11 and v is 2-by-5.

To manipulate a body of text containing lines of different lengths, you have two
choices – a padded character array or a cell array of strings. The char function
accepts any number of lines, adds blanks to each line to make them all the
same length, and forms a character array with each line in a separate row. For
example,

6 Programming with MATLAB

6-14

S = char('A','rolling','stone','gathers','momentum.')

produces a 5-by-9 character array.

S =
A
rolling
stone
gathers
momentum.

There are enough blanks in each of the first four rows of S to make all the rows
the same length. Alternatively, you can store the text in a cell array. For
example,

C = {'A';'rolling';'stone';'gathers';'momentum.'}

is a 5-by-1 cell array.

C =
 'A'
 'rolling'
 'stone'
 'gathers'
 'momentum.'

You can convert a padded character array to a cell array of strings with

C = cellstr(S)

and reverse the process with

S = char(C)

Structures
Structures are multidimensional MATLAB arrays with elements accessed by
textual field designators. For example,

S.name = 'Ed Plum';
S.score = 83;
S.grade = 'B+'

creates a scalar structure with three fields.

Other Data Structures

6-15

S =
 name: 'Ed Plum'
 score: 83
 grade: 'B+'

Like everything else in MATLAB, structures are arrays, so you can insert
additional elements. In this case, each element of the array is a structure with
several fields. The fields can be added one at a time,

S(2).name = 'Toni Miller';
S(2).score = 91;
S(2).grade = 'A-';

or, an entire element can be added with a single statement.

S(3) = struct('name','Jerry Garcia',...
 'score',70,'grade','C')

Now the structure is large enough that only a summary is printed.

S =
1x3 struct array with fields:
 name
 score
 grade

There are several ways to reassemble the various fields into other MATLAB
arrays. They are all based on the notation of a comma separated list. If you type

S.score

it is the same as typing

S(1).score, S(2).score, S(3).score

This is a comma separated list. Without any other punctuation, it is not very
useful. It assigns the three scores, one at a time, to the default variable ans and
dutifully prints out the result of each assignment. But when you enclose the
expression in square brackets,

[S.score]

it is the same as

[S(1).score, S(2).score, S(3).score]

6 Programming with MATLAB

6-16

which produces a numeric row vector containing all of the scores.

ans =
 83 91 70

Similarly, typing

S.name

just assigns the names, one at time, to ans. But enclosing the expression in
curly braces,

{S.name}

creates a 1-by-3 cell array containing the three names.

ans =
 'Ed Plum' 'Toni Miller' 'Jerry Garcia'

And

char(S.name)

calls the char function with three arguments to create a character array from
the name fields,

ans =
Ed Plum
Toni Miller
Jerry Garcia

Scripts and Functions

6-17

Scripts and Functions
MATLAB is a powerful programming language as well as an interactive
computational environment. Files that contain code in the MATLAB language
are called M-files. You create M-files using a text editor, then use them as you
would any other MATLAB function or command.

There are two kinds of M-files:

• Scripts, which do not accept input arguments or return output arguments.
They operate on data in the workspace.

• Functions, which can accept input arguments and return output arguments.
Internal variables are local to the function.

If you’re a new MATLAB programmer, just create the M-files that you want to
try out in the current directory. As you develop more of your own M-files, you
will want to organize them into other directories and personal toolboxes that
you can add to MATLAB’s search path.

If you duplicate function names, MATLAB executes the one that occurs first in
the search path.

To view the contents of an M-file, for example, myfunction.m, use

type myfunction

Scripts
When you invoke a script, MATLAB simply executes the commands found in
the file. Scripts can operate on existing data in the workspace, or they can
create new data on which to operate. Although scripts do not return output
arguments, any variables that they create remain in the workspace, to be used
in subsequent computations. In addition, scripts can produce graphical output
using functions like plot.

For example, create a file called magicrank.m that contains these MATLAB
commands.

% Investigate the rank of magic squares
r = zeros(1,32);
for n = 3:32
 r(n) = rank(magic(n));
end

6 Programming with MATLAB

6-18

r
bar(r)

Typing the statement

magicrank

causes MATLAB to execute the commands, compute the rank of the first 30
magic squares, and plot a bar graph of the result. After execution of the file is
complete, the variables n and r remain in the workspace.

Functions
Functions are M-files that can accept input arguments and return output
arguments. The name of the M-file and of the function should be the same.
Functions operate on variables within their own workspace, separate from the
workspace you access at the MATLAB command prompt.

A good example is provided by rank. The M-file rank.m is available in the
directory

toolbox/matlab/matfun

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35

Scripts and Functions

6-19

You can see the file with

type rank

Here is the file.

function r = rank(A,tol)
% RANK Matrix rank.
% RANK(A) provides an estimate of the number of linearly
% independent rows or columns of a matrix A.
% RANK(A,tol) is the number of singular values of A
% that are larger than tol.
% RANK(A) uses the default tol = max(size(A)) * norm(A) * eps.

s = svd(A);
if nargin==1
 tol = max(size(A)') * max(s) * eps;
end
r = sum(s > tol);

The first line of a function M-file starts with the keyword function. It gives the
function name and order of arguments. In this case, there are up to two input
arguments and one output argument.

The next several lines, up to the first blank or executable line, are comment
lines that provide the help text. These lines are printed when you type

help rank

The first line of the help text is the H1 line, which MATLAB displays when you
use the lookfor command or request help on a directory.

The rest of the file is the executable MATLAB code defining the function. The
variable s introduced in the body of the function, as well as the variables on the
first line, r, A and tol, are all local to the function; they are separate from any
variables in the MATLAB workspace.

This example illustrates one aspect of MATLAB functions that is not ordinarily
found in other programming languages – a variable number of arguments. The
rank function can be used in several different ways.

rank(A)
r = rank(A)
r = rank(A,1.e-6)

6 Programming with MATLAB

6-20

Many M-files work this way. If no output argument is supplied, the result is
stored in ans. If the second input argument is not supplied, the function
computes a default value. Within the body of the function, two quantities
named nargin and nargout are available which tell you the number of input
and output arguments involved in each particular use of the function. The rank
function uses nargin, but does not need to use nargout.

Global Variables
If you want more than one function to share a single copy of a variable, simply
declare the variable as global in all the functions. Do the same thing at the
command line if you want the base workspace to access the variable. The global
declaration must occur before the variable is actually used in a function.
Although it is not required, using capital letters for the names of global
variables helps distinguish them from other variables. For example, create an
M-file called falling.m.

function h = falling(t)
global GRAVITY
h = 1/2*GRAVITY*t.^2;

Then interactively enter the statements

global GRAVITY
GRAVITY = 32;
y = falling((0:.1:5)');

The two global statements make the value assigned to GRAVITY at the
command prompt available inside the function. You can then modify GRAVITY
interactively and obtain new solutions without editing any files.

Passing String Arguments to Functions
You can write MATLAB functions that accept string arguments without the
parentheses and quotes. That is, MATLAB interprets

foo a b c

as

foo('a','b','c')

Scripts and Functions

6-21

However, when using the unquoted form, MATLAB cannot return output
arguments. For example,

legend apples oranges

creates a legend on a plot using the strings apples and oranges as labels. If you
want the legend command to return its output arguments, then you must use
the quoted form.

[legh,objh] = legend('apples','oranges');

In addition, you cannot use the unquoted form if any of the arguments are not
strings.

Constructing String Arguments in Code
The quoted form enables you to construct string arguments within the code.
The following example processes multiple data files, August1.dat,
August2.dat, and so on. It uses the function int2str, which converts an
integer to a character, to build the filename.

for d = 1:31
 s = ['August' int2str(d) '.dat'];
 load(s)
 % Code to process the contents of the d-th file
end

A Cautionary Note
While the unquoted syntax is convenient, it can be used incorrectly without
causing MATLAB to generate an error. For example, given a matrix A,

A =
 0 -6 -1
 6 2 -16

-5 20 -10

The eig command returns the eigenvalues of A.

eig(A)
ans =

-3.0710
-2.4645+17.6008i
-2.4645-17.6008i

6 Programming with MATLAB

6-22

The following statement is not allowed because A is not a string, however
MATLAB does not generate an error.

eig A
ans =

65

MATLAB actually takes the eigenvalues of ASCII numeric equivalent of the
letter A (which is the number 65).

The eval Function
The eval function works with text variables to implement a powerful text
macro facility. The expression or statement

eval(s)

uses the MATLAB interpreter to evaluate the expression or execute the
statement contained in the text string s.

Scripts and Functions

6-23

The example of the previous section could also be done with the following code,
although this would be somewhat less efficient because it involves the full
interpreter, not just a function call.

for d = 1:31
 s = ['load August' int2str(d) '.dat'];
 eval(s)
 % Process the contents of the d-th file
end

Vectorization
To obtain the most speed out of MATLAB, it’s important to vectorize the
algorithms in your M-files. Where other programming languages might use for
or DO loops, MATLAB can use vector or matrix operations. A simple example
involves creating a table of logarithms.

x = .01;
for k = 1:1001
 y(k) = log10(x);
 x = x + .01;
end

A vectorized version of the same code is

x = .01:.01:10;
y = log10(x);

For more complicated code, vectorization options are not always so obvious.
When speed is important, however, you should always look for ways to
vectorize your algorithms.

Preallocation
If you can’t vectorize a piece of code, you can make your for loops go faster by
preallocating any vectors or arrays in which output results are stored. For
example, this code uses the function zeros to preallocate the vector created in
the for loop. This makes the for loop execute significantly faster.

r = zeros(32,1);
for n = 1:32
 r(n) = rank(magic(n));
end

6 Programming with MATLAB

6-24

Without the preallocation in the previous example, the MATLAB interpreter
enlarges the r vector by one element each time through the loop. Vector
preallocation eliminates this step and results in faster execution.

Function Handles
You can create a handle to any MATLAB function and then use that handle as
a means of referencing the function. A function handle is typically passed in an
argument list to other functions, which can then execute, or evaluate, the
function using the handle.

Construct a function handle in MATLAB using the at sign, @, before the
function name. The following example creates a function handle for the sin
function and assigns it to the variable fhandle.

fhandle = @sin;

Evaluate a function handle using the MATLAB feval function. The function
plot_fhandle, shown below, receives a function handle and data, and then
performs an evaluation of the function handle on that data using feval.

function x = plot_fhandle(fhandle, data)
plot(data, feval(fhandle, data))

When you call plot_fhandle with a handle to the sin function and the
argument shown below, the resulting evaluation produces a sine wave plot.

plot_fhandle(@sin, -pi:0.01:pi)

Function Functions
A class of functions, called “function functions,” works with nonlinear functions
of a scalar variable. That is, one function works on another function. The
function functions include:

• Zero finding

• Optimization

• Quadrature

• Ordinary differential equations

Scripts and Functions

6-25

MATLAB represents the nonlinear function by a function M-file. For example,
here is a simplified version of the function humps from the matlab/demos
directory.

function y = humps(x)
y = 1./((x-.3).^2 + .01) + 1./((x-.9).^2 + .04) - 6;

Evaluate this function at a set of points in the interval with

x = 0:.002:1;
y = humps(x);

Then plot the function with

plot(x,y)

The graph shows that the function has a local minimum near x = 0.6. The
function fminsearch finds the minimizer, the value of x where the function
takes on this minimum. The first argument to fminsearch is a function handle
to the function being minimized and the second argument is a rough guess at
the location of the minimum.

0 x 1≤ ≤

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

100

6 Programming with MATLAB

6-26

p = fminsearch(@humps,.5)
p =
 0.6370

To evaluate the function at the minimizer,

humps(p)

ans =
 11.2528

Numerical analysts use the terms quadrature and integration to distinguish
between numerical approximation of definite integrals and numerical
integration of ordinary differential equations. MATLAB’s quadrature routines
are quad and quadl. The statement

Q = quadl(@humps,0,1)

computes the area under the curve in the graph and produces

Q =
 29.8583

Finally, the graph shows that the function is never zero on this interval. So, if
you search for a zero with

z = fzero(@humps,.5)

you will find one outside of the interval

z =
 -0.1316

Demonstration Programs Included with MATLAB

6-27

Demonstration Programs Included with MATLAB
MATLAB includes many demonstration programs that highlight various
features and functions. For a complete list of the demos, at the command
prompt type

help demos

To view a specific file, for example, airfoil, type

edit airfoil

To run a demonstration, type the filename at the command prompt. For
example, to run the airfoil demonstration, type

airfoil

Note Many of the demonstrations use multiple windows and require you to
press a key in the MATLAB Command Window to continue through the
demonstration.

The following tables list some of the current demonstration programs that are
available, organized into these categories:

• MATLAB Matrix Demonstration Programs

• MATLAB Numeric Demonstration Programs

• MATLAB Visualization Demonstration Programs

• MATLAB Language Demonstration Programs

• MATLAB Differential Equation Programs

• MATLAB Gallery Demonstration Programs

• MATLAB Game Demonstration Programs

• MATLAB Miscellaneous Demonstration Programs

• MATLAB Helper Functions Demonstration Programs

6 Programming with MATLAB

6-28

.

MATLAB Matrix Demonstration Programs

airfoil Graphical demonstration of sparse matrix from NASA
airfoil.

buckydem Connectivity graph of the Buckminster Fuller geodesic
dome.

delsqdemo Finite difference Laplacian on various domains.

eigmovie Symmetric eigenvalue movie.

eigshow Graphical demonstration of matrix eigenvalues.

intro Introduction to basic matrix operations in MATLAB.

inverter Demonstration of the inversion of a large matrix.

matmanip Introduction to matrix manipulation.

rrefmovie Computation of reduced row echelon form.

sepdemo Separators for a finite element mesh.

sparsity Demonstration of the effect of sparsity orderings.

svdshow Graphical demonstration of matrix singular values.

MATLAB Numeric Demonstration Programs

bench MATLAB benchmark.

census Prediction of the U.S. population in the year 2000.

e2pi Two-dimensional, visual solution to the problem
“Which is greater, or ?”

fftdemo Use of the FFT function for spectral analysis.

fitdemo Nonlinear curve fit with simplex algorithm.

fplotdemo Demonstration of plotting a function.

eπ πe

Demonstration Programs Included with MATLAB

6-29

funfuns Demonstration of functions operating on other
functions.

lotkademo Example of ordinary differential equation solution.

quaddemo Adaptive quadrature.

qhulldemo Tessellation and interpolation of scattered data.

quake Loma Prieta earthquake.

spline2d Demonstration of ginput and spline in two
dimensions.

sunspots Demonstration of the fast Fourier transform (FFT)
function in MATLAB used to analyze the variations in
sunspot activity.

zerodemo Zero finding with fzero.

MATLAB Visualization Demonstration Programs

colormenu Demonstration of adding a colormap to the current
figure.

cplxdemo Maps of functions of a complex variable.

earthmap Graphical demonstrations of earth’s topography.

graf2d Two-dimensional XY plots in MATLAB.

graf2d2 Three-dimensional XYZ plots in MATLAB.

grafcplx Demonstration of complex function plots in MATLAB.

imagedemo Demonstration of MATLAB’s image capability.

imageext Demonstration of changing and rotating image
colormaps.

MATLAB Numeric Demonstration Programs (Continued)

6 Programming with MATLAB

6-30

lorenz Graphical demonstration of the orbit around the
Lorenz chaotic attractor.

penny Several views of the penny data.

vibes Vibrating L-shaped membrane movie.

xfourier Graphical demonstration of Fourier series expansion.

xpklein Klein bottle demo.

xpsound Demonstration of MATLAB’s sound capability.

MATLAB Language Demonstration Programs

graf3d Demonstration of Handle Graphics for surface plots.

hndlaxis Demonstration of Handle Graphics for axes.

hndlgraf Demonstration of Handle Graphics for line plots.

xplang Introduction to the MATLAB language.

MATLAB Differential Equation Programs

amp1dae Stiff DAE from an electrical circuit.

ballode Equations of motion for a bouncing ball used by
BALLDEMO.

brussode Stiff problem, modelling a chemical reaction
(Brusselator).

burgersode Burger's equation solved using a moving mesh
technique.

fem1ode Stiff problem with a time-dependent mass matrix.

fem2ode Stiff problem with a time-independent mass matrix.

MATLAB Visualization Demonstration Programs (Continued)

Demonstration Programs Included with MATLAB

6-31

hb1dae Stiff DAE from a conservation law.

hb1ode Stiff problem 1 of Hindmarsh and Byrne.

hb3ode Stiff problem 3 of Hindmarsh and Byrne.

mat4bvp Find the fourth eigenvalue of the Mathieu’s equation.

odedemo Demonstration of the ODE suite integrators.

odeexamples Browse the MATLAB ODE/DAE/BVP/PDE examples.

orbitode Restricted 3 body problem used by ORBITDEMO.

pdex1 Example 1 for PDEPE.

pdex2 Example 2 for PDEPE.

pdex3 Example 3 for PDEPE.

pdex4 Example 4 for PDEPE.

rigidode Euler equations of a rigid body without external forces.

shockbvp The solution has a shock layer near x = 0.

twobvp BVP that has exactly two solutions.

vdpode Parameterizable van der Pol equation (stiff for large µ).

MATLAB Gallery Demonstration Programs

cruller Graphical demonstration of a cruller.

klein1 Graphical demonstration of a Klein bottle.

knot Tube surrounding a three-dimensional knot.

logo Graphical demonstration of the MATLAB L-shaped
membrane logo.

MATLAB Differential Equation Programs (Continued)

6 Programming with MATLAB

6-32

modes Graphical demonstration of 12 modes of the L-shaped
membrane.

quivdemo Graphical demonstration of the quiver function.

spharm2 Graphical demonstration of spherical surface
harmonic.

tori4 Graphical demonstration of four-linked, unknotted tori.

MATLAB Game Demonstration Programs

fifteen Sliding puzzle.

life Conway’s Game of Life.

soma Soma cube.

xpbombs Minesweeper game.

MATLAB Miscellaneous Demonstration Programs

chaingui Matrix chain multiplication optimization.

codec Alphabet transposition coder/decoder.

crulspin Spinning cruller movie.

logospin Movie of the MathWorks logo spinning.

makevase Demonstration of a surface of revolution.

quatdemo Quaternion rotation.

spinner Colorful lines spinning through space.

travel Traveling salesman problem.

truss Animation of a bending bridge truss.

MATLAB Gallery Demonstration Programs (Continued)

Demonstration Programs Included with MATLAB

6-33

Getting More Information
The MathWorks Web site (www.mathworks.com) contains numerous M-files
that have been written by users and MathWorks staff. These are accessible by
selecting Downloads. Also, Technical Notes, which is accessible from our
Technical Support Web site (www.mathworks.com/support), contains
numerous examples on graphics, mathematics, API, Simulink, and others.

wrldtrv Great circle flight routes around the globe.

xphide Visual perception of objects in motion.

xpquad Superquadrics plotting demonstration.

MATLAB Helper Functions Demonstration Programs

bucky Graph of the Buckminster Fuller geodesic dome.

cmdlnbgn Set up for command line demos.

cmdlnend Clean up after command line demos.

cmdlnwin Demo gateway routine for running command line
demos.

finddemo Command that finds available demos for individual
toolboxes.

helpfun Utility function for displaying help text conveniently.

membrane The MathWorks logo.

peaks Sample function of two variables.

pltmat Command that displays a matrix in a figure window.

MATLAB Miscellaneous Demonstration Programs (Continued)

6 Programming with MATLAB

6-34

7

Symbolic Math Toolbox

Introduction . 7-2

Getting Help . 7-4

Getting Started 7-5

Calculus . . 7-16

Simplifications and Substitutions 7-43

Variable-Precision Arithmetic 7-58

Linear Algebra 7-63

Solving Equations 7-86

7 Symbolic Math Toolbox

7-2

Introduction
The Symbolic Math Toolbox incorporates symbolic computation into
MATLAB’s numeric environment. This toolbox supplements MATLAB’s
numeric and graphical facilities with several other types of mathematical
computation.

The computational engine underlying the toolboxes is the kernel of Maple, a
system developed primarily at the University of Waterloo, Canada, and, more
recently, at the Eidgenössiche Technische Hochschule, Zürich, Switzerland.
Maple is marketed and supported by Waterloo Maple, Inc.

This version of the Symbolic Math Toolbox is designed to work with MATLAB 6
and Maple V Release 5.

The Symbolic Math Toolbox is a collection of more than one-hundred MATLAB
functions that provide access to the Maple kernel using a syntax and style that
is a natural extension of the MATLAB language. The toolbox also allows you to
access functions in Maple’s linear algebra package. With this toolbox, you can
write your own M-files to access Maple functions and the Maple workspace.

Facility Covers

Calculus Differentiation, integration, limits, summation, and
Taylor series

Linear Algebra Inverses, determinants, eigenvalues, singular value
decomposition, and canonical forms of symbolic
matrices

Simplification Methods of simplifying algebraic expressions

Solution of
Equations

Symbolic and numerical solutions to algebraic and
differential equations

Transforms Fourier, Laplace, z-transform, and corresponding
inverse transforms

Variable-Precision
Arithmetic

Numerical evaluation of mathematical expressions
to any specified accuracy

Introduction

7-3

The following sections of this tutorial provide explanation and examples on
how to use the toolbox.

For More Information You can access complete reference information for
the Symbolic Math Toolbox functions from Help. Also, you can print the PDF
version of the complete Symbolic Math Toolbox User’s Guide (tutorial and
reference information) from the Symbolic Math Toolbox roadmap in Help.

Section Covers

“Getting Help” How to get online help for Symbolic Math
Toolbox functions

“Getting Started” Basic symbolic math operations

“Calculus” How to differentiate and integrate symbolic
expressions

“Simplifications and
Substitutions”

How to simplify and substitute values into
expressions

“Variable-Precision
Arithmetic”

How to control the precision of
computations

“Linear Algebra” Examples using the toolbox functions

“Solving Equations” How to solve symbolic equations

7 Symbolic Math Toolbox

7-4

Getting Help
There are several ways to find information on using Symbolic Math Toolbox
functions. One, of course, is to read this chapter! Another is to use online Help,
which contains tutorials and reference information for all the functions. You
can also use MATLAB’s command line help system. Generally, you can obtain
help on MATLAB functions simply by typing

help function

where function is the name of the MATLAB function for which you need help.
This is not sufficient, however, for some Symbolic Math Toolbox functions. The
reason? The Symbolic Math Toolbox “overloads” many of MATLAB’s numeric
functions. That is, it provides symbolic-specific implementations of the
functions, using the same function name. To obtain help for the symbolic
version of an overloaded function, type

help sym/function

where function is the overloaded function’s name. For example, to obtain help
on the symbolic version of the overloaded function, diff, type

help sym/diff

To obtain information on the numeric version, on the other hand, simply type

help diff

How can you tell whether a function is overloaded? The help for the numeric
version tells you so. For example, the help for the diff function contains the
section

Overloaded methods
 help char/diff.m
 help sym/diff.m

This tells you that there are two other diff commands that operate on
expressions of class char and class sym, respectively. See the next section for
information on class sym. For more information on overloaded commands, see
“Overloading Operators and Functions” in Using MATLAB, which is accessible
from Help.

Getting Started

7-5

Getting Started
This section describes how to create and use symbolic objects. It also describes
the default symbolic variable. If you are familiar with version 1 of the Symbolic
Math Toolbox, please note that version 2 uses substantially different and
simpler syntax.

To get a quick online introduction to the Symbolic Math Toolbox, type demos at
the MATLAB command line. MATLAB displays the MATLAB Demos dialog
box. Select Symbolic Math (in the left list box) and then Introduction (in the
right list box).

Symbolic Objects
The Symbolic Math Toolbox defines a new MATLAB data type called a
symbolic object or sym (for more information on data types, the MATLAB topic
“Programming and Data Types” in Using MATLAB). Internally, a symbolic
object is a data structure that stores a string representation of the symbol. The
Symbolic Math Toolbox uses symbolic objects to represent symbolic variables,
expressions, and matrices.

7 Symbolic Math Toolbox

7-6

Creating Symbolic Variables and Expressions
The sym command lets you construct symbolic variables and expressions. For
example, the commands

x = sym('x')
a = sym('alpha')

create a symbolic variable x that prints as x and a symbolic variable a that
prints as alpha.

Suppose you want to use a symbolic variable to represent the golden ratio

The command

rho = sym('(1 + sqrt(5))/2')

achieves this goal. Now you can perform various mathematical operations on
rho. For example,

f = rho^2 - rho - 1

returns

f =

(1/2+1/2*5^(1/2))^2-3/2-1/2*5^(1/2)

Then

simplify(f)

returns

0

Now suppose you want to study the quadratic function . The
statement

f = sym('a*x^2 + b*x + c')

assigns the symbolic expression to the variable f. Observe that in
this case, the Symbolic Math Toolbox does not create variables corresponding
to the terms of the expression, , , , and . To perform symbolic math

ρ 1 5+
2

-----------------=

f ax2 bx c+ +=

ax2 bx c+ +

a b c x

Getting Started

7-7

operations (e.g., integration, differentiation, substitution, etc.) on f, you need
to create the variables explicitly. You can do this by typing

a = sym('a')
b = sym('b')
c = sym('c')
x = sym('x')

or simply

syms a b c x

In general, you can use sym or syms to create symbolic variables. We
recommend you use syms because it requires less typing.

Symbolic and Numeric Conversions
Consider the ordinary MATLAB quantity

t = 0.1

The sym function has four options for returning a symbolic representation of
the numeric value stored in t. The 'f' option

sym(t,'f')

returns a symbolic floating-point representation

'1.999999999999a'*2^(-4)

The 'r' option

sym(t,'r')

returns the rational form

1/10

This is the default setting for sym. That is, calling sym without a second
argument is the same as using sym with the 'r' option.

sym(t)

ans =
1/10

7 Symbolic Math Toolbox

7-8

The third option 'e' returns the rational form of t plus the difference between
the theoretical rational expression for t and its actual (machine) floating-point
value in terms of eps (the floating-point relative accuracy).

sym(t,'e')

ans =
1/10+eps/40

The fourth option 'd' returns the decimal expansion of t up to the number of
significant digits specified by digits.

sym(t,'d')

ans =
.10000000000000000555111512312578

The default value of digits is 32 (hence, sym(t,'d') returns a number with 32
significant digits), but if you prefer a shorter representation, use the digits
command as follows.

digits(7)
sym(t,'d')

ans =
.1000000

A particularly effective use of sym is to convert a matrix from numeric to
symbolic form. The command

A = hilb(3)

generates the 3-by-3 Hilbert matrix.

A =

 1.0000 0.5000 0.3333
 0.5000 0.3333 0.2500
 0.3333 0.2500 0.2000

By applying sym to A

A = sym(A)

Getting Started

7-9

you can obtain the (infinitely precise) symbolic form of the 3-by-3 Hilbert
matrix.

A =

[1, 1/2, 1/3]
[1/2, 1/3, 1/4]
[1/3, 1/4, 1/5]

Constructing Real and Complex Variables
The sym command allows you to specify the mathematical properties of
symbolic variables by using the 'real' option. That is, the statements

x = sym('x','real'); y = sym('y','real');

or more efficiently

syms x y real
z = x + i*y

create symbolic variables x and y that have the added mathematical property
of being real variables. Specifically this means that the expression

f = x^2 + y^2

is strictly nonnegative. Hence, z is a (formal) complex variable and can be
manipulated as such. Thus, the commands

conj(x), conj(z), expand(z*conj(z))

return the complex conjugates of the variables

x, x-i*y, x^2+y^2

The conj command is the complex conjugate operator for the toolbox. If
conj(x) == x returns 1, then x is a real variable.

To clear x of its “real” property, you must type

syms x unreal

or

x = sym('x','unreal')

7 Symbolic Math Toolbox

7-10

The command

clear x

does not make x a nonreal variable.

Creating Abstract Functions
If you want to create an abstract (i.e., indeterminant) function , type

f = sym('f(x)')

Then f acts like and can be manipulated by the toolbox commands. To
construct the first difference ratio, for example, type

df = (subs(f,'x','x+h') - f)/'h'

or

syms x h
df = (subs(f,x,x+h)-f)/h

which returns

df =
(f(x+h)-f(x))/h

This application of sym is useful when computing Fourier, Laplace, and
z-transforms.

Example: Creating a Symbolic Matrix
A circulant matrix has the property that each row is obtained from the previous
one by cyclically permuting the entries one step forward. We create the
circulant matrix A whose elements are a, b, and c, using the commands

syms a b c
A = [a b c; b c a; c a b]

which return

A =
[a, b, c]
[b, c, a]
[c, a, b]

f x()

f x()

Getting Started

7-11

Since A is circulant, the sum over each row and column is the same. Let’s check
this for the first row and second column. The command

sum(A(1,:))

returns

ans =
a+b+c

The command

sum(A(1,:)) == sum(A(:,2)) % This is a logical test.

returns

ans =
 1

Now replace the (2,3) entry of A with beta and the variable b with alpha. The
commands

syms alpha beta;
A(2,3) = beta;
A = subs(A,b,alpha)

return

A =
[a, alpha, c]
[alpha, c, beta]
[c, a, alpha]

From this example, you can see that using symbolic objects is very similar to
using regular MATLAB numeric objects.

The Default Symbolic Variable
When manipulating mathematical functions, the choice of the independent
variable is often clear from context. For example, consider the expressions in
the table below.

7 Symbolic Math Toolbox

7-12

If we ask for the derivatives of these expressions, without specifying the
independent variable, then by mathematical convention we obtain ,

, and . Let’s assume that the
independent variables in these three expressions are , , and , respectively.
The other symbols, , , , and , are usually regarded as “constants” or
“parameters.” If, however, we wanted to differentiate the first expression with
respect to , for example, we could write

to get .

By mathematical convention, independent variables are often lower-case
letters found near the end of the Latin alphabet (e.g., x, y, or z). This is the idea
behind findsym, a utility function in the toolbox used to determine default
symbolic variables. Default symbolic variables are utilized by the calculus,
simplification, equation-solving, and transform functions. To apply this utility
to the example discussed above, type

syms a b n nu t x z
f = x^n; g = sin(a*t + b); h = besselj(nu,z);

This creates the symbolic expressions f, g, and h to match the example. To
differentiate these expressions, we use diff.

diff(f)

returns

ans =
x^n*n/x

Mathematical Function MATLAB Command

f = x^n

g = sin(a*t + b)

h = besselj(nu,z)

f xn
=

g at b+()sin=

h Jv z()=

f′ nxn
=

g′ a at b+()cos= h′ Jv z() v z⁄() Jv 1+ z()–=
x t z

n a b v

n

 ord
dn
------- f x() d

dn
-------xn

xn xln

Getting Started

7-13

See the section “Differentiation” for a more detailed discussion of
differentiation and the diff command.

Here, as above, we did not specify the variable with respect to differentiation.
How did the toolbox determine that we wanted to differentiate with respect to
x? The answer is the findsym command

findsym(f,1)

which returns

ans =
x

Similarly, findsym(g,1) and findsym(h,1) return t and z, respectively. Here
the second argument of findsym denotes the number of symbolic variables we
want to find in the symbolic object f, using the findsym rule (see below). The
absence of a second argument in findsym results in a list of all symbolic
variables in a given symbolic expression. We see this demonstrated below. The
command

findsym(g)

returns the result

ans =
a, b, t

findsym Rule The default symbolic variable in a symbolic expression is the
letter that is closest to 'x' alphabetically. If there are two equally close, the
letter later in the alphabet is chosen.

7 Symbolic Math Toolbox

7-14

Here are some examples.

Creating Symbolic Math Functions
There are two ways to create functions:

• Use symbolic expressions

• Create an M-file

Using Symbolic Expressions
The sequence of commands

syms x y z
r = sqrt(x^2 + y^2 + z^2)
t = atan(y/x)
f = sin(x*y)/(x*y)

generates the symbolic expressions r, t, and f. You can use diff, int, subs,
and other Symbolic Math Toolbox functions to manipulate such expressions.

Expression Variable Returned by findsym

x^n x

sin(a*t+b) t

besselj(nu,z) z

w*y + v*z y

exp(i*theta) theta

log(alpha*x1) x1

y*(4+3*i) + 6*j y

sqrt(pi*alpha) alpha

Getting Started

7-15

Creating an M-File
M-files permit a more general use of functions. Suppose, for example, you want
to create the sinc function sin(x)/x. To do this, create an M-file in the @sym
directory.

function z = sinc(x)
%SINC The symbolic sinc function
% sin(x)/x. This function
% accepts a sym as the input argument.
if isequal(x,sym(0))
 z = 1;
else
 z = sin(x)/x;
end

You can extend such examples to functions of several variables. See the
MATLAB topic “Programming and Data Types” in Using MATLAB for a more
detailed discussion on object-oriented programming.

7 Symbolic Math Toolbox

7-16

Calculus
The Symbolic Math Toolbox provides functions to do the basic operations of
calculus; differentiation, limits, integration, summation, and Taylor series
expansion. The following sections outline these functions.

Differentiation
Let’s create a symbolic expression.

syms a x
f = sin(a*x)

Then

diff(f)

differentiates f with respect to its symbolic variable (in this case x), as
determined by findsym.

ans =
cos(a*x)*a

To differentiate with respect to the variable a, type

diff(f,a)

which returns

ans =
cos(a*x)*x

To calculate the second derivatives with respect to x and a, respectively, type

diff(f,2)

or

diff(f,x,2)

which return

ans =
-sin(a*x)*a^2

df da⁄

Calculus

7-17

and

diff(f,a,2)

which returns

ans =
-sin(a*x)*x^2

Define a, b, x, n, t, and theta in the MATLAB workspace, using the sym
command. The table below illustrates the diff command.

To differentiate the Bessel function of the first kind, besselj(nu,z), with
respect to z, type

syms nu z
b = besselj(nu,z);
db = diff(b)

which returns

db =
-besselj(nu+1,z)+nu/z*besselj(nu,z)

The diff function can also take a symbolic matrix as its input. In this case, the
differentiation is done element-by-element. Consider the example

syms a x
A = [cos(a*x),sin(a*x);-sin(a*x),cos(a*x)]

which returns

A =
[cos(a*x), sin(a*x)]
[-sin(a*x), cos(a*x)]

f diff(f)

x^n x^n*n/x

sin(a*t+b) cos(a*t+b)*a

exp(i*theta) i*exp(i*theta)

7 Symbolic Math Toolbox

7-18

The command

diff(A)

returns

ans =
[-sin(a*x)*a, cos(a*x)*a]
[-cos(a*x)*a, -sin(a*x)*a]

You can also perform differentiation of a column vector with respect to a row
vector. Consider the transformation from Euclidean (x, y, z) to spherical

 coordinates as given by , , and
. Note that corresponds to elevation or latitude while denotes

azimuth or longitude.

To calculate the Jacobian matrix, J, of this transformation, use the jacobian
function. The mathematical notation for J is

For the purposes of toolbox syntax, we use l for and f for . The commands

syms r l f
x = r*cos(l)*cos(f); y = r*cos(l)*sin(f); z = r*sin(l);
J = jacobian([x; y; z], [r l f])

return the Jacobian

r λ ϕ, ,() x r λ ϕcoscos= y r λ ϕsincos=
z r λsin= λ ϕ

z

y

x

(x,y,z)

ϕ

λ

r

J x y x, ,()∂
r λ ϕ, ,()∂

-----------------------=

λ ϕ

Calculus

7-19

J =

[cos(l)*cos(f), -r*sin(l)*cos(f), -r*cos(l)*sin(f)]
[cos(l)*sin(f), -r*sin(l)*sin(f), r*cos(l)*cos(f)]
[sin(l), r*cos(l), 0]

and the command

detJ = simple(det(J))

returns

detJ =
-cos(l)*r^2

Notice that the first argument of the jacobian function must be a column
vector and the second argument a row vector. Moreover, since the determinant
of the Jacobian is a rather complicated trigonometric expression, we used the
simple command to make trigonometric substitutions and reductions
(simplifications). The section “Simplifications and Substitutions” discusses
simplification in more detail.

A table summarizing diff and jacobian follows.

Mathematical Operator MATLAB Command

diff(f) or diff(f,x)

diff(f,a)

diff(f,b,2)

J = jacobian([r:t],[u,v])

xd
df

ad
df

b2

2

d

d f

J r t,()∂
u v,()∂

-----------------=

7 Symbolic Math Toolbox

7-20

Limits
The fundamental idea in calculus is to make calculations on functions as a
variable “gets close to” or approaches a certain value. Recall that the definition
of the derivative is given by a limit

provided this limit exists. The Symbolic Math Toolbox allows you to compute
the limits of functions in a direct manner. The commands

syms h n x
limit((cos(x+h) - cos(x))/h,h,0)

which return

ans =
-sin(x)

and

limit((1 + x/n)^n,n,inf)

which returns

ans =
exp(x)

illustrate two of the most important limits in mathematics: the derivative (in
this case of cos x) and the exponential function. While many limits

are “two sided” (that is, the result is the same whether the approach is from the
right or left of a), limits at the singularities of are not. Hence, the three
limits

yield the three distinct results: undefined, , and , respectively.

f′ x()
f x h+() f x()–

h

h 0→
lim=

f x()
x a→
lim

f x()

, , and1
x

x 0→
lim 1

x

x 0-→
lim 1

x

x 0+→
lim

∞– +∞

Calculus

7-21

In the case of undefined limits, the Symbolic Math Toolbox returns NaN (not a
number). The command

limit(1/x,x,0)

or

limit(1/x)

returns

ans =
NaN

The command

limit(1/x,x,0,'left')

returns

ans =
-inf

while the command

limit(1/x,x,0,'right')

returns

ans =
inf

Observe that the default case, limit(f) is the same as limit(f,x,0). Explore
the options for the limit command in this table. Here, we assume that f is a
function of the symbolic object x.

 Mathematical Operation MATLAB Command

limit(f)

limit(f,x,a) or
limit(f,a)

f x()
x 0→
lim

f x()
x a→
lim

7 Symbolic Math Toolbox

7-22

Integration
If f is a symbolic expression, then

int(f)

attempts to find another symbolic expression, F, so that diff(F) = f. That is,
int(f) returns the indefinite integral or antiderivative of f (provided one exists
in closed form). Similar to differentiation,

int(f,v)

uses the symbolic object v as the variable of integration, rather than the
variable determined by findsym. See how int works by looking at this table.

limit(f,x,a,'left')

limit(f,x,a,'right')

 Mathematical Operation MATLAB Command

int(x^n) or
int(x^n,x)

int(sin(2*x),0,pi/2) or
int(sin(2*x),x,0,pi/2)

g = cos(a*t + b)
int(g) or
int(g,t)

int(besselj(1,z)) or
int(besselj(1,z),z)

 Mathematical Operation MATLAB Command

f x()
x a-→
lim

f x()
x a+→
lim

xn xd∫ xn 1+

n 1+
--------------=

2x()sin xd
0

π 2⁄

∫ 1=

g at b+()cos=

g t() td∫ at b+()sin a⁄=

J1 z()∫ dz J– 0 z()=

Calculus

7-23

In contrast to differentiation, symbolic integration is a more complicated task.
A number of difficulties can arise in computing the integral. The
antiderivative, F, may not exist in closed form; it may define an unfamiliar
function; it may exist, but the software can’t find the antiderivative; the
software could find it on a larger computer, but runs out of time or memory on
the available machine. Nevertheless, in many cases, MATLAB can perform
symbolic integration successfully. For example, create the symbolic variables

syms a b theta x y n x1 u

This table illustrates integration of expressions containing those variables.

The last example shows what happens if the toolbox can’t find the
antiderivative; it simply returns the command, including the variable of
integration, unevaluated.

Definite integration is also possible. The commands

int(f,a,b)

and

int(f,v,a,b)

are used to find a symbolic expression for

respectively.

f int(f)

x^n x^(n+1)/(n+1)

y^(-1) log(y)

n^x 1/log(n)*n^x

sin(a*theta+b) -1/a*cos(a*theta+b)

exp(-x1^2) 1/2*pi^(1/2)*erf(x1)

1/(1+u^2) atan(u)

 andf x()
a

b

∫ dx f v() vd
a

b

∫

7 Symbolic Math Toolbox

7-24

Here are some additional examples.

For the Bessel function (besselj) example, it is possible to compute a
numerical approximation to the value of the integral, using the double
function. The command

a = int(besselj(1,z),0,1)

returns

a =
1/4*hypergeom([1],[2, 2],-1/4)

and the command

a = double(a)

returns

a =
0.2348

Integration with Real Constants
One of the subtleties involved in symbolic integration is the “value” of various
parameters. For example, the expression

is the positive, bell shaped curve that tends to 0 as x tends to for any real
number k. An example of this curve is depicted below with

f a, b int(f,a,b)

x^7 0, 1 1/8

1/x 1, 2 log(2)

log(x)*sqrt(x) 0, 1 -4/9

exp(-x^2) 0, inf 1/2*pi^(1/2)

besselj(1,z) 0, 1 1/4*hypergeom([1],[2, 2],-1/4)

e kx()– 2

∞±

Calculus

7-25

and generated, using these commands.

syms x
k = sym(1/sqrt(2));
f = exp(-(k*x)^2);
ezplot(f)

The Maple kernel, however, does not, a priori, treat the expressions or
as positive numbers. To the contrary, Maple assumes that the symbolic
variables and as a priori indeterminate. That is, they are purely formal
variables with no mathematical properties. Consequently, the initial attempt
to compute the integral

k 1
2

-------=

−3 −2 −1 0 1 2 3

0

0.2

0.4

0.6

0.8

1

x

exp(−1/2 x2)

k2 x2

x k

7 Symbolic Math Toolbox

7-26

in the Symbolic Math Toolbox, using the commands

syms x k;
f = exp(-(k*x)^2);
int(f,x,-inf,inf)

results in the output

Definite integration: Can't determine if the integral is
convergent.
Need to know the sign of --> k^2
Will now try indefinite integration and then take limits.

Warning: Explicit integral could not be found.
ans =
int(exp(-k^2*x^2),x= -inf..inf)

In the next section, you will see how to make a real variable and therefore
 positive.

Real Variables via sym
Notice that Maple is not able to determine the sign of the expression k^2. How
does one surmount this obstacle? The answer is to make k a real variable, using
the sym command. One particularly useful feature of sym, namely the real
option, allows you to declare k to be a real variable. Consequently, the integral
above is computed, in the toolbox, using the sequence

syms k real
int(f,x,-inf,inf)

which returns

ans =
signum(k)/k*pi^(1/2)

Notice that k is now a symbolic object in the MATLAB workspace and a real
variable in the Maple kernel workspace. By typing

clear k

e kx()– 2

∞–

∞

∫ dx

k
k2

Calculus

7-27

you only clear k in the MATLAB workspace. To ensure that k has no formal
properties (that is, to ensure k is a purely formal variable), type

syms k unreal

This variation of the syms command clears k in the Maple workspace. You can
also declare a sequence of symbolic variables w, y, x, z to be real, using

syms w x y z real

In this case, all of the variables in between the words syms and real are
assigned the property real. That is, they are real variables in the Maple
workspace.

Symbolic Summation
You can compute symbolic summations, when they exist, by using the symsum
command. For example, the p-series

adds to , while the geometric series adds to ,
provided . Three summations are demonstrated below.

syms x k
s1 = symsum(1/k^2,1,inf)
s2 = symsum(x^k,k,0,inf)

s1 =

1/6*pi^2

s2 =

-1/(x-1)

1 1

22
------ 1

32
------ …+ + +

π2 6⁄ 1 x x2 …+ + + 1 1 x–()⁄
x 1<

7 Symbolic Math Toolbox

7-28

Taylor Series
The statements

syms x
f = 1/(5+4*cos(x))
T = taylor(f,8)

return

T =
1/9+2/81*x^2+5/1458*x^4+49/131220*x^6

which is all the terms up to, but not including, order eight in the
Taylor series for .

Technically, T is a Maclaurin series, since its basepoint is a = 0.

The command

pretty(T)

prints T in a format resembling typeset mathematics.

 2 4 49 6
1/9 + 2/81 x + 5/1458 x + ------ x
 131220

These commands

syms x
g = exp(x*sin(x))
t = taylor(g,12,2);

generate the first 12 nonzero terms of the Taylor series for g about x = 2.

Let’s plot these functions together to see how well this Taylor approximation
compares to the actual function g.

O x8()()
f x()

x a–()n

n 0=

∞

∑ f n() a()
n!

Calculus

7-29

xd = 1:0.05:3; yd = subs(g,x,xd);
ezplot(t, [1,3]); hold on;
plot(xd, yd, 'r-.')
title('Taylor approximation vs. actual function');
legend('Function','Taylor')

Special thanks to Professor Gunnar Bäckstrøm of UMEA in Sweden for this
example.

Extended Calculus Example
The function

provides a starting point for illustrating several calculus operations in the
toolbox. It is also an interesting function in its own right. The statements

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
1

2

3

4

5

6

x

Taylor approximation vs. actual function

Function
Taylor

f x() 1
5 4 x()cos+
------------------------------=

7 Symbolic Math Toolbox

7-30

syms x
f = 1/(5+4*cos(x))

store the symbolic expression defining the function in f.

The function ezplot(f) produces the plot of as shown below.

The ezplot function tries to make reasonable choices for the range of the x-axis
and for the resulting scale of the y-axis. Its choices can be overridden by an
additional input argument, or by subsequent axis commands. The default
domain for a function displayed by ezplot is . To produce a graph
of for , type

ezplot(f,[a b])

f x()

−6 −4 −2 0 2 4 6

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

1/(5+4 cos(x))

2π– x 2π≤ ≤
f x() a x b≤ ≤

Calculus

7-31

Let’s now look at the second derivative of the function f.

f2 = diff(f,2)

f2 =
32/(5+4*cos(x))^3*sin(x)^2+4/(5+4*cos(x))^2*cos(x)

Equivalently, we can type f2 = diff(f,x,2). The default scaling in ezplot
cuts off part of f2’s graph. Set the axes limits manually to see the entire
function.

ezplot(f2)
axis([-2*pi 2*pi -5 2])

From the graph, it appears that the values of lie between -4 and 1. As it
turns out, this is not true. We can calculate the exact range for f (i.e., compute
its actual maximum and minimum).

−6 −4 −2 0 2 4 6
−5

−4

−3

−2

−1

0

1

2

x

32/(5+4 cos(x))3 sin(x)2+4/(5+4 cos(x))2 cos(x)

f′′ x()

7 Symbolic Math Toolbox

7-32

The actual maxima and minima of occur at the zeros of . The
statements

f3 = diff(f2);
pretty(f3)

compute and display it in a more readable format.

3
sin(x) sin(x) cos(x) sin(x)

384 --------------- + 96 --------------- - 4 ---------------
4 3 2

(5 + 4 cos(x)) (5 + 4 cos(x)) (5 + 4 cos(x))

We can simplify this expression using the statements

f3 = simple(f3);
pretty(f3)

2 2
sin(x) (96 sin(x) + 80 cos(x) + 80 cos(x) - 25)

4 ---
 4
 (5 + 4 cos(x))

Now use the solve function to find the zeros of .

z = solve(f3)

returns a 5-by-1 symbolic matrix

z =
[0]
[atan((-255-60*19^(1/2))^(1/2),10+3*19^(1/2))]
[atan(-(-255-60*19^(1/2))^(1/2),10+3*19^(1/2))]
[atan((-255+60*19^(1/2))^(1/2)/(10-3*19^(1/2)))+pi]
[-atan((-255+60*19^(1/2))^(1/2)/(10-3*19^(1/2)))-pi]

each of whose entries is a zero of . The commands

format; % Default format of 5 digits
zr = double(z)

f′′ x() f′′′ x()

f′′′ x()

f′′′ x()

f′′′ x()

Calculus

7-33

convert the zeros to double form.

zr =

 0
 0+ 2.4381i
 0- 2.4381i
 2.4483
 -2.4483

So far, we have found three real zeros and two complex zeros. However, a graph
of f3 shows that we have not yet found all its zeros.

ezplot(f3)
hold on;
plot(zr,0*zr,'ro')
plot([-2*pi,2*pi], [0,0],'g-.');
title('Zeros of f3')

−6 −4 −2 0 2 4 6

−3

−2

−1

0

1

2

3

x

Zeros of f3

7 Symbolic Math Toolbox

7-34

This occurs because contains a factor of , which is zero at integer
multiples of . The function, solve(sin(x)), however, only reports the zero at
x = 0.

We can obtain a complete list of the real zeros by translating zr

zr = [0 zr(4) pi 2*pi-zr(4)]

by multiples of

zr = [zr-2*pi zr zr+2*pi];

Now let’s plot the transformed zr on our graph for a complete picture of the
zeros of f3.

plot(zr,0*zr,'kX')

f′′′ x() x()sin
π

2π

−6 −4 −2 0 2 4 6

−3

−2

−1

0

1

2

3

x

Zeros of f3

Calculus

7-35

The first zero of found by solve is at x = 0. We substitute 0 for the
symbolic variable in f2

f20 = subs(f2,x,0)

to compute the corresponding value of .

f20 =
 0.0494

A look at the graph of shows that this is only a local minimum, which we
demonstrate by replotting f2.

clf
ezplot(f2)
axis([-2*pi 2*pi -4.25 1.25])
ylabel('f2');
title('Plot of f2 = f''''(x)')
hold on
plot(0,double(f20),'ro')
text(-1,-0.25,'Local minimum')

The resulting plot

f′′′ x()

f′′ 0()

f′′ x()

7 Symbolic Math Toolbox

7-36

indicates that the global minima occur near and . We can
demonstrate that they occur exactly at , using the following sequence of
commands. First we try substituting and into .

simple([subs(f3,x,-sym(pi)),subs(f3,x,sym(pi))])

The result

ans =
[0, 0]

shows that and happen to be critical points of . We can see that
and are global minima by plotting f2(-pi) and f2(pi) against f2(x).

m1 = double(subs(f2,x,-pi)); m2 = double(subs(f2,x,pi));
plot(-pi,m1,'go',pi,m2,'go')
text(-1,-4,'Global minima')

−6 −4 −2 0 2 4 6

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

x

Plot of f2 = f’’(x)

f2

Local minimum

x π–= x π=
x π±=
π– π f′′′ x()

π– π f′′′ x() π–
π

Calculus

7-37

The actual minima are m1, m2

ans =
[-4, -4]

as shown in the following plot.

The foregoing analysis confirms part of our original guess that the range of
 is [-4, 1]. We can confirm the other part by examining the fourth zero

of found by solve. First extract the fourth zero from z and assign it to a
separate variable

s = z(4)

to obtain

s =
atan((-255+60*19^(1/2))^(1/2)/(10-3*19^(1/2)))+pi

−6 −4 −2 0 2 4 6

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

x

Plot of f2 = f’’(x)

f2

Local minimum

Global minima

f′′ x()
f′′′ x()

7 Symbolic Math Toolbox

7-38

Executing

sd = double(s)

displays the zero’s corresponding numeric value.

sd =
2.4483

Plotting the point (s, f2(s)) against f2, using

M1 = double(subs(f2,x,s));
plot(sd,M1,'ko')
text(-1,1,'Global maximum')

visually confirms that s is a maximum.

The maximum is M1 = 1.0051.

−6 −4 −2 0 2 4 6

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

x

Plot of f2 = f’’(x)

f2

Local minimum

Global minima

Global maximum

Calculus

7-39

Therefore, our guess that the maximum of is [-4, 1] was close, but
incorrect. The actual range is [-4, 1.0051].

Now, let’s see if integrating twice with respect to x recovers our original
function . The command

g = int(int(f2))

returns

g =
-8/(tan(1/2*x)^2+9)

This is certainly not the original expression for . Let’s look at the difference
.

d = f - g
pretty(d)

 1 8
 –––––––––––– + –––––––––––––––
 5 + 4 cos(x) 2
 tan(1/2 x) + 9

We can simplify this using simple(d) or simplify(d). Either command
produces

ans =
1

This illustrates the concept that differentiating twice, then integrating the
result twice, produces a function that may differ from by a linear function
of .

Finally, integrate once more.

F = int(f)

The result

F =
2/3*atan(1/3*tan(1/2*x))

involves the arctangent function.

f′′ x()

f′′ x()
f x() 1 5 4 xcos+()⁄=

f x()
f x() g x()–

f x()
f x()

x

f x()

7 Symbolic Math Toolbox

7-40

Though is the antiderivative of a continuous function, it is itself
discontinuous as the following plot shows.

ezplot(F)

Note that has jumps at . This occurs because is singular at
.

In fact, as

ezplot(atan(tan(x)))

shows, the numerical value of atan(tan(x))differs from x by a piecewise
constant function that has jumps at odd multiples of .

F x()

−6 −4 −2 0 2 4 6

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

2/3 atan(1/3 tan(1/2 x))

F x() x π±= xtan
x π±=

π 2⁄

Calculus

7-41

To obtain a representation of that does not have jumps at these points, we
must introduce a second function, , that compensates for the
discontinuities. Then we add the appropriate multiple of to

J = sym('round(x/(2*pi))');
c = sym('2/3*pi');
F1 = F+c*J
F1 =
2/3*atan(1/3*tan(1/2*x))+2/3*pi*round(1/2*x/pi)

and plot the result.

ezplot(F1,[-6.28,6.28])

This representation does have a continuous graph.

−6 −4 −2 0 2 4 6

−1.5

−1

−0.5

0

0.5

1

1.5

x

atan(tan(x))

F x()
J x()

J x() F x()

7 Symbolic Math Toolbox

7-42

Notice that we use the domain [-6.28, 6.28] in ezplot rather than the default
domain . The reason for this is to prevent an evaluation of

at the singular points and where
the jumps in F and J do not cancel out one another. The proper handling of
branch cut discontinuities in multivalued functions like arctan x is a deep and
difficult problem in symbolic computation. Although MATLAB and Maple
cannot do this entirely automatically, they do provide the tools for
investigating such questions.

−6 −4 −2 0 2 4 6
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x

2/3 atan(1/3 tan(1/2 x))+2/3 π round(1/2 x/π)

2π– 2π[,]
F1 2 3⁄ 1 3⁄ 1 2⁄ xtan()atan= x π–= x π=

Simplifications and Substitutions

7-43

Simplifications and Substitutions
There are several functions that simplify symbolic expressions and are used to
perform symbolic substitutions.

Simplifications
Here are three different symbolic expressions.

syms x
f = x^3-6*x^2+11*x-6
g = (x-1)*(x-2)*(x-3)
h = x*(x*(x-6)+11)-6

Here are their prettyprinted forms, generated by

pretty(f), pretty(g), pretty(h)

 3 2
x - 6 x + 11 x - 6

(x - 1) (x - 2) (x - 3)

x (x (x - 6) + 11) - 6

These expressions are three different representations of the same
mathematical function, a cubic polynomial in x.

Each of the three forms is preferable to the others in different situations. The
first form, f, is the most commonly used representation of a polynomial. It is
simply a linear combination of the powers of x. The second form, g, is the
factored form. It displays the roots of the polynomial and is the most accurate
for numerical evaluation near the roots. But, if a polynomial does not have such
simple roots, its factored form may not be so convenient. The third form, h, is
the Horner, or nested, representation. For numerical evaluation, it involves the
fewest arithmetic operations and is the most accurate for some other ranges of
x.

The symbolic simplification problem involves the verification that these three
expressions represent the same function. It also involves a less clearly defined
objective — which of these representations is “the simplest”?

7 Symbolic Math Toolbox

7-44

This toolbox provides several functions that apply various algebraic and
trigonometric identities to transform one representation of a function into
another, possibly simpler, representation. These functions are collect,
expand, horner, factor, simplify, and simple.

collect
The statement

collect(f)

views f as a polynomial in its symbolic variable, say x, and collects all the
coefficients with the same power of x. A second argument can specify the
variable in which to collect terms if there is more than one candidate. Here are
a few examples.

expand
The statement

expand(f)

distributes products over sums and applies other identities involving functions
of sums. For example,

f collect(f)

(x-1)*(x-2)*(x-3) x^3-6*x^2+11*x-6

x*(x*(x-6)+11)-6 x^3-6*x^2+11*x-6

(1+x)*t + x*t 2*x*t+t

f expand(f)

a∗(x + y) a∗x + a∗y

(x-1)∗(x-2)∗(x-3) x^3-6∗x^2+11∗x-6

x∗(x∗(x-6)+11)-6 x^3-6∗x^2+11∗x-6

Simplifications and Substitutions

7-45

horner
The statement

horner(f)

transforms a symbolic polynomial f into its Horner, or nested, representation.
For example,

factor
If f is a polynomial with rational coefficients, the statement

factor(f)

expresses f as a product of polynomials of lower degree with rational
coefficients. If f cannot be factored over the rational numbers, the result is f
itself. For example,

exp(a+b) exp(a)∗exp(b)

cos(x+y) cos(x)*cos(y)-sin(x)*sin(y)

cos(3∗acos(x)) 4*x^3-3*x

f horner(f)

x^3-6∗x^2+11∗x-6 -6+(11+(-6+x)*x)*x

1.1+2.2∗x+3.3∗x^2 11/10+(11/5+33/10*x)*x

f factor(f)

x^3-6∗x^2+11∗x-6 (x-1)∗(x-2)∗(x-3)

x^3-6∗x^2+11∗x-5 x^3-6∗x^2+11∗x-5

x^6+1 (x^2+1)∗(x^4-x^2+1)

f expand(f)

7 Symbolic Math Toolbox

7-46

Here is another example involving factor. It factors polynomials of the form
x^n + 1. This code

syms x;
n = (1:9)';
p = x.^n + 1;
f = factor(p);
[p, f]

returns a matrix with the polynomials in its first column and their factored
forms in its second.

[x+1, x+1]
[x^2+1, x^2+1]
[x^3+1, (x+1)*(x^2-x+1)]
[x^4+1, x^4+1]
[x^5+1, (x+1)*(x^4-x^3+x^2-x+1)]
[x^6+1, (x^2+1)*(x^4-x^2+1)]
[x^7+1, (x+1)*(1-x+x^2-x^3+x^4-x^5+x^6)]
[x^8+1, x^8+1]
[x^9+1, (x+1)*(x^2-x+1)*(x^6-x^3+1)]

As an aside at this point, we mention that factor can also factor symbolic
objects containing integers. This is an alternative to using the factor function
in MATLAB’s specfun directory. For example, the following code segment

N = sym(1);
for k = 2:11
 N(k) = 10*N(k-1)+1;
end
[N' factor(N')]

Simplifications and Substitutions

7-47

 displays the factors of symbolic integers consisting of 1s.

[1, 1]
[11, (11)]
[111, (3)*(37)]
[1111, (11)*(101)]
[11111, (41)*(271)]
[111111, (3)*(7)*(11)*(13)*(37)]
[1111111, (239)*(4649)]
[11111111, (11)*(73)*(101)*(137)]
[111111111, (3)^2*(37)*(333667)]
[1111111111, (11)*(41)*(271)*(9091)]
[11111111111, (513239)*(21649)]

simplify
The simplify function is a powerful, general purpose tool that applies a
number of algebraic identities involving sums, integral powers, square roots
and other fractional powers, as well as a number of functional identities
involving trig functions, exponential and log functions, Bessel functions,
hypergeometric functions, and the gamma function. Here are some examples.

f simplify(f)

x∗(x∗(x-6)+11)-6 x^3-6∗x^2+11∗x-6

(1-x^2)/(1-x) x+1

(1/a^3+6/a^2+12/a+8)^(1/3) ((2*a+1)^3/a^3)^(1/3)

syms x y positive
log(x∗y) log(x)+log(y)

exp(x) ∗ exp(y) exp(x+y)

besselj(2,x) + besselj(0,x) 2/x*besselj(1,x)

gamma(x+1)-x*gamma(x) 0

cos(x)^2 + sin(x)^2 1

7 Symbolic Math Toolbox

7-48

simple
The simple function has the unorthodox mathematical goal of finding a
simplification of an expression that has the fewest number of characters. Of
course, there is little mathematical justification for claiming that one
expression is “simpler” than another just because its ASCII representation is
shorter, but this often proves satisfactory in practice.

The simple function achieves its goal by independently applying simplify,
collect, factor, and other simplification functions to an expression and
keeping track of the lengths of the results. The simple function then returns
the shortest result.

The simple function has several forms, each returning different output. The
form

simple(f)

displays each trial simplification and the simplification function that produced
it in the MATLAB command window. The simple function then returns the
shortest result. For example, the command

simple(cos(x)^2 + sin(x)^2)

displays the following alternative simplifications in the MATLAB command
window

simplify:
1

radsimp:
cos(x)^2+sin(x)^2

combine(trig):
1

factor:
cos(x)^2+sin(x)^2

expand:
cos(x)^2+sin(x)^2

convert(exp):
(1/2*exp(i*x)+1/2/exp(i*x))^2-1/4*(exp(i*x)-1/exp(i*x))^2

Simplifications and Substitutions

7-49

convert(sincos):
cos(x)^2+sin(x)^2

convert(tan):
(1-tan(1/2*x)^2)^2/(1+tan(1/2*x)^2)^2+4*tan(1/2*x)^2/
(1+tan(1/2*x)^2)^2

collect(x):
cos(x)^2+sin(x)^2

and returns

ans =
1

This form is useful when you want to check, for example, whether the shortest
form is indeed the simplest. If you are not interested in how simple achieves
its result, use the form

f = simple(f)

This form simply returns the shortest expression found. For example, the
statement

f = simple(cos(x)^2+sin(x)^2)

returns

f =
1

If you want to know which simplification returned the shortest result, use the
multiple output form.

[F, how] = simple(f)

This form returns the shortest result in the first variable and the simplification
method used to achieve the result in the second variable. For example, the
statement

[f, how] = simple(cos(x)^2+sin(x)^2)

7 Symbolic Math Toolbox

7-50

returns

f =
1

how =
combine

The simple function sometimes improves on the result returned by simplify,
one of the simplifications that it tries. For example, when applied to the
examples given for simplify, simple returns a simpler (or at least shorter)
result in two cases.

In some cases, it is advantageous to apply simple twice to obtain the effect of
two different simplification functions. For example, the statements

f = (1/a^3+6/a^2+12/a+8)^(1/3);
simple(simple(f))

return

2+1/a

The first application, simple(f), uses radsimp to produce (2*a+1)/a; the
second application uses combine(trig) to transform this to 1/a+2.

The simple function is particularly effective on expressions involving
trigonometric functions. Here are some examples.

f simplify(f) simple(f)

(1/a^3+6/a^2+12/a+8)^(1/3) ((2*a+1)^3/a^3)^(1/3) (2*a+1)/a

syms x y positive
log(x∗y) log(x)+log(y) log(x*y)

f simple(f)

cos(x)^2+sin(x)^2 1

2∗cos(x)^2-sin(x)^2 3∗cos(x)^2-1

cos(x)^2-sin(x)^2 cos(2∗x)

Simplifications and Substitutions

7-51

Substitutions
There are two functions for symbolic substitution: subexpr and subs.

subexpr
These commands

syms a x
s = solve(x^3+a*x+1)

solve the equation x^3+a*x+1 = 0 for x.

s =
[1/6*(-108+12*(12*a^3+81)^(1/2))^(1/3)-2*a/
 (-108+12*(12*a^3+81)^(1/2))^(1/3)]
[-1/12*(-108+12*(12*a^3+81)^(1/2))^(1/3)+a/
 (-108+12*(12*a^3+81)^(1/2))^(1/3)+1/2*i*3^(1/2)*(1/
 6*(-108+12*(12*a^3+81)^(1/2))^(1/3)+2*a/
 (-108+12*(12*a^3+81)^(1/2))^(1/3))]
[-1/12*(-108+12*(12*a^3+81)^(1/2))^(1/3)+a/
 (-108+12*(12*a^3+81)^(1/2))^(1/3)-1/2*i*3^(1/2)*(1/
 6*(-108+12*(12*a^3+81)^(1/2))^(1/3)+2*a/
 (-108+12*(12*a^3+81)^(1/2))^(1/3))]

cos(x)+(-sin(x)^2)^(1/2) cos(x)+i∗sin(x)

cos(x)+i∗sin(x) exp(i∗x)

cos(3∗acos(x)) 4∗x^3-3∗x

f simple(f)

7 Symbolic Math Toolbox

7-52

Use the pretty function to display s in a more readable form.

pretty(s)

s =
[1/3 a]
[1/6 %1 - 2 -----]
[1/3]
[%1]
[]
[1/3 a 1/2 / 1/3 a \]
[- 1/12 %1 + ----- + 1/2 i 3 |1/6 %1 + 2 -----|]
[1/3 | 1/3|]
[%1 \ %1 /]
[]
[1/3 a 1/2 / 1/3 a \]
[- 1/12 %1 + ----- - 1/2 i 3 |1/6 %1 + 2 -----|]
[1/3 | 1/3|]
[%1 \ %1 /]

 3 1/2
 %1 := -108 + 12 (12 a + 81)

The pretty command inherits the %n (n, an integer) notation from Maple to
denote subexpressions that occur multiple times in the symbolic object. The
subexpr function allows you to save these common subexpressions as well as
the symbolic object rewritten in terms of the subexpressions. The
subexpressions are saved in a column vector called sigma.

Continuing with the example

r = subexpr(s)

returns

sigma =
-108+12*(12*a^3+81)^(1/2)

r =
[1/6*sigma^(1/3)-2*a/sigma^(1/3)]
[-1/12*sigma^(1/3)+a/sigma^(1/3)+1/2*i*3^(1/2)*(1/6*sigma^
 (1/3)+2*a/sigma^(1/3))]

Simplifications and Substitutions

7-53

[-1/12*sigma^(1/3)+a/sigma^(1/3)-1/2*i*3^(1/2)*(1/6*sigma^
 (1/3)+2*a/sigma^(1/3))]

Notice that subexpr creates the variable sigma in the MATLAB workspace.
You can verify this by typing whos, or the command

 sigma

which returns

sigma =
-108+12*(12*a^3+81)^(1/2)

subs
Let’s find the eigenvalues and eigenvectors of a circulant matrix A.

syms a b c
A = [a b c; b c a; c a b];
[v,E] = eig(A)

v =

[-(a+(b^2-b*a-c*b-c*a+a^2+c^2)^(1/2)-b)/(a-c),
 -(a-(b^2-b*a-c*b-c*a+a^2+c^2)^(1/2)-b)/(a-c), 1]
[-(b-c-(b^2-b*a-c*b-c*a+a^2+c^2)^(1/2))/(a-c),
 -(b-c+(b^2-b*a-c*b-c*a+a^2+c^2)^(1/2))/(a-c), 1]
[1,
 1, 1]

E =

[(b^2-b*a-c*b-
 c*a+a^2+c^2)^(1/2), 0, 0]
[0, -(b^2-b*a-c*b-
 c*a+a^2+c^2)^(1/2), 0]
[0, 0, b+c+a]

Suppose we want to replace the rather lengthy expression

(b^2-b*a-c*b-c*a+a^2+c^2)^(1/2)

7 Symbolic Math Toolbox

7-54

throughout v and E. We first use subexpr

v = subexpr(v,'S')

which returns

S =
(b^2-b*a-c*b-c*a+a^2+c^2)^(1/2)

v =
[-(a+S-b)/(a-c), -(a-S-b)/(a-c), 1]
[-(b-c-S)/(a-c), -(b-c+S)/(a-c), 1]
[1, 1, 1]

Next, substitute the symbol S into E with

E = subs(E,S,'S')

E =
[S, 0, 0]
[0, -S, 0]
[0, 0, b+c+a]

Now suppose we want to evaluate v at a = 10. We can do this using the subs
command.

subs(v,a,10)

This replaces all occurrences of a in v with 10.

[-(10+S-b)/(10-c), -(10-S-b)/(10-c), 1]
[-(b-c-S)/(10-c), -(b-c+S)/(10-c), 1]
[1, 1, 1]

Notice, however, that the symbolic expression represented by S is unaffected by
this substitution. That is, the symbol a in S is not replaced by 10. The subs
command is also a useful function for substituting in a variety of values for
several variables in a particular expression. Let’s look at S. Suppose that in
addition to substituting a = 10, we also want to substitute the values for 2 and
10 for b and c, respectively. The way to do this is to set values for a, b, and c in
the workspace. Then subs evaluates its input using the existing symbolic and
double variables in the current workspace. In our example, we first set

Simplifications and Substitutions

7-55

a = 10; b = 2; c = 10;
subs(S)

ans =
8

To look at the contents of our workspace, type whos, which gives

Name Size Bytes Class

 A 3x3 878 sym object
 E 3x3 888 sym object
 S 1x1 186 sym object
 a 1x1 8 double array
 ans 1x1 140 sym object
 b 1x1 8 double array
 c 1x1 8 double array
 v 3x3 982 sym object

a, b, and c are now variables of class doublewhile A, E, S, and v remain symbolic
expressions (class sym).

If you want to preserve a, b, and c as symbolic variables, but still alter their
value within S, use this procedure.

syms a b c
subs(S,{a,b,c},{10,2,10})

ans =
8

Typing whos reveals that a, b, and c remain 1-by-1 sym objects.

The subs command can be combined with double to evaluate a symbolic
expression numerically. Suppose we have

syms t
M = (1-t^2)*exp(-1/2*t^2);
P = (1-t^2)*sech(t);

and want to see how M and P differ graphically.

One approach is to type

ezplot(M); hold on; ezplot(P)

7 Symbolic Math Toolbox

7-56

but this plot

does not readily help us identify the curves.

Instead, combine subs, double, and plot

T = -6:0.05:6;
MT = double(subs(M,t,T));
PT = double(subs(P,t,T));
plot(T,MT,'b',T,PT,'r-.')
title(' ')
legend('M','P')
xlabel('t'); grid

to produce a multicolored graph that indicates the difference between M and P.

−6 −4 −2 0 2 4 6

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t

(1−t2) sech(t)

Simplifications and Substitutions

7-57

Finally the use of subs with strings greatly facilitates the solution of problems
involving the Fourier, Laplace, or z-transforms.

−6 −4 −2 0 2 4 6
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t

M
P

7 Symbolic Math Toolbox

7-58

Variable-Precision Arithmetic

Overview
There are three different kinds of arithmetic operations in this toolbox.

For example, the MATLAB statements

format long
1/2+1/3

use numeric computation to produce

0.83333333333333

With the Symbolic Math Toolbox, the statement

sym(1/2)+1/3

uses symbolic computation to yield

5/6

And, also with the toolbox, the statements

digits(25)
vpa('1/2+1/3')

use variable-precision arithmetic to return

.8333333333333333333333333

The floating-point operations used by numeric arithmetic are the fastest of the
three, and require the least computer memory, but the results are not exact.
The number of digits in the printed output of MATLAB’s double quantities is
controlled by the format statement, but the internal representation is always
the eight-byte floating-point representation provided by the particular
computer hardware.

Numeric MATLAB’s floating-point arithmetic

Rational Maple’s exact symbolic arithmetic

VPA Maple’s variable-precision arithmetic

Variable-Precision Arithmetic

7-59

In the computation of the numeric result above, there are actually three
roundoff errors, one in the division of 1 by 3, one in the addition of 1/2 to the
result of the division, and one in the binary to decimal conversion for the
printed output. On computers that use IEEE floating-point standard
arithmetic, the resulting internal value is the binary expansion of 5/6,
truncated to 53 bits. This is approximately 16 decimal digits. But, in this
particular case, the printed output shows only 15 digits.

The symbolic operations used by rational arithmetic are potentially the most
expensive of the three, in terms of both computer time and memory. The results
are exact, as long as enough time and memory are available to complete the
computations.

Variable-precision arithmetic falls in between the other two in terms of both
cost and accuracy. A global parameter, set by the function digits, controls the
number of significant decimal digits. Increasing the number of digits increases
the accuracy, but also increases both the time and memory requirements. The
default value of digits is 32, corresponding roughly to floating-point accuracy.

The Maple documentation uses the term “hardware floating-point” for what we
are calling “numeric” or “floating-point” and uses the term “floating-point
arithmetic” for what we are calling “variable-precision arithmetic.”

Example: Using the Different Kinds of Arithmetic

Rational Arithmetic
By default, the Symbolic Math Toolbox uses rational arithmetic operations, i.e.,
Maple’s exact symbolic arithmetic. Rational arithmetic is invoked when you
create symbolic variables using the sym function.

The sym function converts a double matrix to its symbolic form. For example, if
the double matrix is

A =
1.1000 1.2000 1.3000
2.1000 2.2000 2.3000
3.1000 3.2000 3.3000

its symbolic form, S = sym(A), is

S =
[11/10, 6/5, 13/10]

7 Symbolic Math Toolbox

7-60

[21/10, 11/5, 23/10]
[31/10, 16/5, 33/10]

For this matrix A, it is possible to discover that the elements are the ratios of
small integers, so the symbolic representation is formed from those integers.
On the other hand, the statement

E = [exp(1) sqrt(2); log(3) rand]

returns a matrix

E =
2.71828182845905 1.41421356237310
1.09861228866811 0.21895918632809

whose elements are not the ratios of small integers, so sym(E) reproduces the
floating-point representation in a symbolic form.

[3060513257434037*2^(-50), 3184525836262886*2^(-51)]
[2473854946935174*2^(-51), 3944418039826132*2^(-54)]

Variable-Precision Numbers
Variable-precision numbers are distinguished from the exact rational
representation by the presence of a decimal point. A power of 10 scale factor,
denoted by 'e', is allowed. To use variable-precision instead of rational
arithmetic, create your variables using the vpa function.

For matrices with purely double entries, the vpa function generates the
representation that is used with variable-precision arithmetic. Continuing on
with our example, and using digits(4), applying vpa to the matrix S

vpa(S)

generates the output

S =
[1.100, 1.200, 1.300]
[2.100, 2.200, 2.300]
[3.100, 3.200, 3.300]

and with digits(25)

F = vpa(E)

Variable-Precision Arithmetic

7-61

generates

F =
[2.718281828459045534884808, 1.414213562373094923430017]
[1.098612288668110004152823, .2189591863280899719512718]

Converting to Floating-Point
To convert a rational or variable-precision number to its MATLAB
floating-point representation, use the double function.

In our example, both double(sym(E)) and double(vpa(E)) return E.

Another Example
The next example is perhaps more interesting. Start with the symbolic
expression

f = sym('exp(pi*sqrt(163))')

The statement

double(f)

produces the printed floating-point value

2.625374126407687e+17

Using the second argument of vpa to specify the number of digits,

vpa(f,18)

returns

262537412640768744.

whereas

vpa(f,25)

returns

262537412640768744.0000000

We suspect that f might actually have an integer value. This suspicion is
reinforced by the 30 digit value, vpa(f,30)

262537412640768743.999999999999

7 Symbolic Math Toolbox

7-62

Finally, the 40 digit value, vpa(f,40)

262537412640768743.9999999999992500725944

shows that f is very close to, but not exactly equal to, an integer.

Linear Algebra

7-63

Linear Algebra

Basic Algebraic Operations
Basic algebraic operations on symbolic objects are the same as operations on
MATLAB objects of class double. This is illustrated in the following example.

The Givens transformation produces a plane rotation through the angle t. The
statements

syms t;
G = [cos(t) sin(t); -sin(t) cos(t)]

create this transformation matrix.

G =
[cos(t), sin(t)]
[-sin(t), cos(t)]

Applying the Givens transformation twice should simply be a rotation through
twice the angle. The corresponding matrix can be computed by multiplying G
by itself or by raising G to the second power. Both

A = G*G

and

A = G^2

produce

A =
[cos(t)^2-sin(t)^2, 2*cos(t)*sin(t)]
[-2*cos(t)*sin(t), cos(t)^2-sin(t)^2]

The simple function

A = simple(A)

uses a trigonometric identity to return the expected form by trying several
different identities and picking the one that produces the shortest
representation.

7 Symbolic Math Toolbox

7-64

A =
[cos(2*t), sin(2*t)]
[-sin(2*t), cos(2*t)]

A Givens rotation is an orthogonal matrix, so its transpose is its inverse.
Confirming this by

I = G.' *G

which produces

I =
[cos(t)^2+sin(t)^2, 0]
[0, cos(t)^2+sin(t)^2]

and then

I = simple(I)
I =
[1, 0]
[0, 1]

Linear Algebraic Operations
Let’s do several basic linear algebraic operations.

The command

H = hilb(3)

generates the 3-by-3 Hilbert matrix. With format short, MATLAB prints

H =
1.0000 0.5000 0.3333
0.5000 0.3333 0.2500
0.3333 0.2500 0.2000

The computed elements of H are floating-point numbers that are the ratios of
small integers. Indeed, H is a MATLAB array of class double. Converting H to
a symbolic matrix

H = sym(H)

Linear Algebra

7-65

gives

[1, 1/2, 1/3]
[1/2, 1/3, 1/4]
[1/3, 1/4, 1/5]

This allows subsequent symbolic operations on H to produce results that
correspond to the infinitely precise Hilbert matrix, sym(hilb(3)), not its
floating-point approximation, hilb(3). Therefore,

inv(H)

produces

[9, -36, 30]
[-36, 192, -180]
[30, -180, 180]

and

det(H)

yields

1/2160

We can use the backslash operator to solve a system of simultaneous linear
equations. The commands

b = [1 1 1]'
x = H\b % Solve Hx = b

produce the solution

[3]
[-24]
[30]

All three of these results, the inverse, the determinant, and the solution to the
linear system, are the exact results corresponding to the infinitely precise,
rational, Hilbert matrix. On the other hand, using digits(16), the command

V = vpa(hilb(3))

7 Symbolic Math Toolbox

7-66

returns

[1., .5000000000000000, .3333333333333333]
[.5000000000000000, .3333333333333333, .2500000000000000]
[.3333333333333333, .2500000000000000, .2000000000000000]

The decimal points in the representation of the individual elements are the
signal to use variable-precision arithmetic. The result of each arithmetic
operation is rounded to 16 significant decimal digits. When inverting the
matrix, these errors are magnified by the matrix condition number, which for
hilb(3) is about 500. Consequently,

inv(V)

which returns

[9.000000000000082, -36.00000000000039, 30.00000000000035]
[-36.00000000000039, 192.0000000000021, -180.0000000000019]
[30.00000000000035, -180.0000000000019, 180.0000000000019]

shows the loss of two digits. So does

det(V)

which gives

.462962962962958e-3

and

V\b

which is

[3.000000000000041]
[-24.00000000000021]
[30.00000000000019]

Since H is nonsingular, the null space of H

null(H)

and the column space of H

colspace(H)

Linear Algebra

7-67

produce an empty matrix and a permutation of the identity matrix,
respectively. To make a more interesting example, let’s try to find a value s for
H(1,1) that makes H singular. The commands

syms s
H(1,1) = s
Z = det(H)
sol = solve(Z)

produce

H =
[s, 1/2, 1/3]
[1/2, 1/3, 1/4]
[1/3, 1/4, 1/5]

Z =
1/240*s-1/270

sol =
8/9

Then

H = subs(H,s,sol)

substitutes the computed value of sol for s in H to give

H =
[8/9, 1/2, 1/3]
[1/2, 1/3, 1/4]
[1/3, 1/4, 1/5]

Now, the command

det(H)

returns

ans =
0

and

inv(H)

7 Symbolic Math Toolbox

7-68

produces an error message

??? error using ==> inv
Error, (in inverse) singular matrix

because H is singular. For this matrix, Z = null(H) and C = colspace(H) are
nontrivial.

Z =
[1]
[-4]
[10/3]

C =
[0, 1]
[1, 0]
[6/5, -3/10]

It should be pointed out that even though H is singular, vpa(H) is not. For any
integer value d, setting

digits(d)

and then computing

det(vpa(H))
inv(vpa(H))

results in a determinant of size 10^(-d) and an inverse with elements on the
order of 10^d.

Eigenvalues
The symbolic eigenvalues of a square matrix A or the symbolic eigenvalues and
eigenvectors of A are computed, respectively, using the commands

E = eig(A)
[V,E] = eig(A)

The variable-precision counterparts are

E = eig(vpa(A))
[V,E] = eig(vpa(A))

Linear Algebra

7-69

The eigenvalues of A are the zeros of the characteristic polynomial of A,
det(A-x*I), which is computed by

poly(A)

The matrix H from the last section provides our first example.

H =
[8/9, 1/2, 1/3]
[1/2, 1/3, 1/4]
[1/3, 1/4, 1/5]

The matrix is singular, so one of its eigenvalues must be zero. The statement

[T,E] = eig(H)

produces the matrices T and E. The columns of T are the eigenvectors of H.

T =

[1, 28/153+2/153*12589^(1/2), 28/153-2/153*12589^(12)]
[-4, 1, 1]
[10/3, 92/255-1/255*12589^(1/2), 292/255+1/255*12589^(12)]

Similarly, the diagonal elements of E are the eigenvalues of H.

E =

[0, 0, 0]
[0, 32/45+1/180*12589^(1/2), 0]
[0, 0, 32/45-1/180*12589^(1/2)]

It may be easier to understand the structure of the matrices of eigenvectors, T,
and eigenvalues, E, if we convert T and E to decimal notation. We proceed as
follows. The commands

Td = double(T)
Ed = double(E)

return

Td =
 1.0000 1.6497 -1.2837
 -4.0000 1.0000 1.0000
 3.3333 0.7051 1.5851

7 Symbolic Math Toolbox

7-70

Ed =
 0 0 0
 0 1.3344 0
 0 0 0.0878

The first eigenvalue is zero. The corresponding eigenvector (the first column of
Td) is the same as the basis for the null space found in the last section. The
other two eigenvalues are the result of applying the quadratic formula to

x^2-64/45*x+253/2160

which is the quadratic factor in factor(poly(H)).

syms x
g = simple(factor(poly(H))/x);
solve(g)

Closed form symbolic expressions for the eigenvalues are possible only when
the characteristic polynomial can be expressed as a product of rational
polynomials of degree four or less. The Rosser matrix is a classic numerical
analysis test matrix that happens to illustrate this requirement. The
statement

R = sym(gallery('rosser'))

generates

 R =
[611 196 -192 407 -8 -52 -49 29]
[196 899 113 -192 -71 -43 -8 -44]
[-192 113 899 196 61 49 8 52]
[407 -192 196 611 8 44 59 -23]
[-8 -71 61 8 411 -599 208 208]
[-52 -43 49 44 -599 411 208 208]
[-49 -8 8 59 208 208 99 -911]
[29 -44 52 -23 208 208 -911 99]

The commands

p = poly(R);
pretty(factor(p))

Linear Algebra

7-71

produce

 2 2 2
 x (x - 1020) (x - 1020 x + 100)(x - 1040500) (x - 1000)

The characteristic polynomial (of degree 8) factors nicely into the product of two
linear terms and three quadratic terms. We can see immediately that four of
the eigenvalues are 0, 1020, and a double root at 1000. The other four roots are
obtained from the remaining quadratics. Use

eig(R)

to find all these values

[0]
[1020]
[510+100*26^(1/2)]
[510-100*26^(1/2)]
[10*10405^(1/2)]
[-10*10405^(1/2)]
[1000]
[1000]

The Rosser matrix is not a typical example; it is rare for a full 8-by-8 matrix to
have a characteristic polynomial that factors into such simple form. If we
change the two “corner” elements of R from 29 to 30 with the commands

S = R; S(1,8) = 30; S(8,1) = 30;

and then try

p = poly(S)

we find

p =
40250968213600000+51264008540948000*x-
 1082699388411166000*x^2+4287832912719760*x^-3-
 5327831918568*x^4+82706090*x^5+5079941*x^6-
 4040*x^7+x^8

We also find that factor(p) is p itself. That is, the characteristic polynomial
cannot be factored over the rationals.

7 Symbolic Math Toolbox

7-72

For this modified Rosser matrix

F = eig(S)

returns

F =
[-1020.0532142558915165931894252600]
[-.17053529728768998575200874607757]
[.21803980548301606860857564424981]
[999.94691786044276755320289228602]
[1000.1206982933841335712817075454]
[1019.5243552632016358324933278291]
[1019.9935501291629257348091808173]
[1020.4201882015047278185457498840]

Notice that these values are close to the eigenvalues of the original Rosser
matrix. Further, the numerical values of F are a result of Maple’s floating-point
arithmetic. Consequently, different settings of digits do not alter the number
of digits to the right of the decimal place.

It is also possible to try to compute eigenvalues of symbolic matrices, but closed
form solutions are rare. The Givens transformation is generated as the matrix
exponential of the elementary matrix

The Symbolic Math Toolbox commands

syms t
A = sym([0 1; -1 0]);
G = expm(t*A)

return

[cos(t), sin(t)]
[-sin(t), cos(t)]

Next, the command

g = eig(G)

produces

A 0 1
1– 0

=

Linear Algebra

7-73

g =
[cos(t)+(cos(t)^2-1)^(1/2)]
[cos(t)-(cos(t)^2-1)^(1/2)]

We can use simple to simplify this form of g. Indeed, repeated application of
simple

for j = 1:4
[g,how] = simple(g)

end

produces the best result

g =
[cos(t)+(-sin(t)^2)^(1/2)]
[cos(t)-(-sin(t)^2)^(1/2)]

how =
simplify

g =
[cos(t)+i*sin(t)]
[cos(t)-i*sin(t)]

how =
radsimp

g =
[exp(i*t)]
[1/exp(i*t)]

how =
convert(exp)

g =
[exp(i*t)]
[exp(-i*t)]

how =
combine

7 Symbolic Math Toolbox

7-74

Notice the first application of simple uses simplify to produce a sum of sines
and cosines. Next, simple invokes radsimp to produce cos(t) + i*sin(t) for
the first eigenvector. The third application of simple uses convert(exp) to
change the sines and cosines to complex exponentials. The last application of
simple uses simplify to obtain the final form.

Jordan Canonical Form
The Jordan canonical form results from attempts to diagonalize a matrix by a
similarity transformation. For a given matrix A, find a nonsingular matrix V,
so that inv(V)*A*V, or, more succinctly, J = V\A*V, is “as close to diagonal as
possible.” For almost all matrices, the Jordan canonical form is the diagonal
matrix of eigenvalues and the columns of the transformation matrix are the
eigenvectors. This always happens if the matrix is symmetric or if it has
distinct eigenvalues. Some nonsymmetric matrices with multiple eigenvalues
cannot be diagonalized. The Jordan form has the eigenvalues on its diagonal,
but some of the superdiagonal elements are one, instead of zero. The statement

J = jordan(A)

computes the Jordan canonical form of A. The statement

[V,J] = jordan(A)

also computes the similarity transformation. The columns of V are the
generalized eigenvectors of A.

The Jordan form is extremely sensitive to perturbations. Almost any change in
A causes its Jordan form to be diagonal. This makes it very difficult to compute
the Jordan form reliably with floating-point arithmetic. It also implies that A
must be known exactly (i.e., without round-off error, etc.). Its elements must be
integers, or ratios of small integers. In particular, the variable-precision
calculation, jordan(vpa(A)), is not allowed.

For example, let

A = sym([12,32,66,116;-25,-76,-164,-294;
21,66,143,256;-6,-19,-41,-73])

A =
[12, 32, 66, 116]
[-25, -76, -164, -294]
[21, 66, 143, 256]
[-6, -19, -41, -73]

Linear Algebra

7-75

Then

[V,J] = jordan(A)

produces

V =
[4, -2, 4, 3]
[-6, 8, -11, -8]
[4, -7, 10, 7]
[-1, 2, -3, -2]

J =
[1, 1, 0, 0]
[0, 1, 0, 0]
[0, 0, 2, 1]
[0, 0, 0, 2]

Therefore A has a double eigenvalue at 1, with a single Jordan block, and a
double eigenvalue at 2, also with a single Jordan block. The matrix has only
two eigenvectors, V(:,1) and V(:,3). They satisfy

A*V(:,1) = 1*V(:,1)
A*V(:,3) = 2*V(:,3)

The other two columns of V are generalized eigenvectors of grade 2. They
satisfy

A*V(:,2) = 1*V(:,2) + V(:,1)
A*V(:,4) = 2*V(:,4) + V(:,3)

In mathematical notation, with vj = v(:,j), the columns of V and eigenvalues
satisfy the relationships

A λ2I–()v4 v3=

A λ1I–()v2 v1=

7 Symbolic Math Toolbox

7-76

Singular Value Decomposition
Only the variable-precision numeric computation of the singular value
decomposition is available in the toolbox. One reason for this is that the
formulas that result from symbolic computation are usually too long and
complicated to be of much use. If A is a symbolic matrix of floating-point or
variable-precision numbers, then

S = svd(A)

computes the singular values of A to an accuracy determined by the current
setting of digits. And

[U,S,V] = svd(A);

produces two orthogonal matrices, U and V, and a diagonal matrix, S, so that

A = U*S*V';

Let’s look at the n-by-n matrix A with elements defined by

A(i,j) = 1/(i-j+1/2)

For n = 5, the matrix is

[2 -2 -2/3 -2/5 -2/7]
[2/3 2 -2 -2/3 -2/5]
[2/5 2/3 2 -2 -2/3]
[2/7 2/5 2/3 2 -2]
[2/9 2/7 2/5 2/3 2]

It turns out many of the singular values of these matrices are close to .

The most obvious way of generating this matrix is

for i=1:n
 for j=1:n
 A(i,j) = sym(1/(i-j+1/2));

end
end

The most efficient way to generate the matrix is

[J,I] = meshgrid(1:n);
A = sym(1./(I - J+1/2));

π

Linear Algebra

7-77

Since the elements of A are the ratios of small integers, vpa(A) produces a
variable-precision representation, which is accurate to digits precision. Hence

S = svd(vpa(A))

computes the desired singular values to full accuracy. With n = 16 and
digits(30), the result is

S =
[1.20968137605668985332455685357]
[2.69162158686066606774782763594]
[3.07790297231119748658424727354]
[3.13504054399744654843898901261]
[3.14106044663470063805218371924]
[3.14155754359918083691050658260]
[3.14159075458605848728982577119]
[3.14159256925492306470284863102]
[3.14159265052654880815569479613]
[3.14159265349961053143856838564]
[3.14159265358767361712392612384]
[3.14159265358975439206849907220]
[3.14159265358979270342635559051]
[3.14159265358979323325290142781]
[3.14159265358979323843066846712]
[3.14159265358979323846255035974]

There are two ways to compare S with pi, the floating-point representation of
. In the vector below, the first element is computed by subtraction with

variable-precision arithmetic and then converted to a double. The second
element is computed with floating-point arithmetic.

format short e
[double(pi*ones(16,1)-S) pi-double(S)]

The results are

 1.9319e+00 1.9319e+00
 4.4997e-01 4.4997e-01
 6.3690e-02 6.3690e-02
 6.5521e-03 6.5521e-03
 5.3221e-04 5.3221e-04
 3.5110e-05 3.5110e-05
 1.8990e-06 1.8990e-06

π

7 Symbolic Math Toolbox

7-78

 8.4335e-08 8.4335e-08
 3.0632e-09 3.0632e-09
 9.0183e-11 9.0183e-11
 2.1196e-12 2.1196e-12
 3.8846e-14 3.8636e-14
 5.3504e-16 4.4409e-16
 5.2097e-18 0
 3.1975e-20 0
 9.3024e-23 0

Since the relative accuracy of pi is pi*eps, which is 6.9757e-16, either column
confirms our suspicion that four of the singular values of the 16-by-16 example
equal to floating-point accuracy.

Eigenvalue Trajectories
This example applies several numeric, symbolic, and graphic techniques to
study the behavior of matrix eigenvalues as a parameter in the matrix is
varied. This particular setting involves numerical analysis and perturbation
theory, but the techniques illustrated are more widely applicable.

In this example, we consider a 3-by-3 matrix A whose eigenvalues are 1, 2, 3.
First, we perturb A by another matrix E and parameter . As t
increases from 0 to 10-6, the eigenvalues , , change to

, , .

π

t: A A tE+→
λ1 1= λ2 2= λ3 3=

λ1′ 1.5596 0.2726i+≈ λ2′ 1.5596 0.2726i–≈ λ3′ 2.8808≈

Linear Algebra

7-79

This, in turn, means that for some value of , the perturbed
matrix has a double eigenvalue .

Let’s find the value of t, called , where this happens.

The starting point is a MATLAB test example, known as gallery(3).

A = gallery(3)
A =
 -149 -50 -154
 537 180 546
 -27 -9 -25

This is an example of a matrix whose eigenvalues are sensitive to the effects of
roundoff errors introduced during their computation. The actual computed
eigenvalues may vary from one machine to another, but on a typical
workstation, the statements

0 0.5 1 1.5 2 2.5 3 3.5

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

λ(1) λ(2) λ(3)

λ’(1)

λ’(2)

λ’(3)

t τ 0 τ 10 6–< <,=
A t() A tE+= λ1 λ2=

τ

7 Symbolic Math Toolbox

7-80

format long
e = eig(A)

produce

e =
 0.99999999999642
 2.00000000000579
 2.99999999999780

Of course, the example was created so that its eigenvalues are actually 1, 2, and
3. Note that three or four digits have been lost to roundoff. This can be easily
verified with the toolbox. The statements

B = sym(A);
e = eig(B)'
p = poly(B)
f = factor(p)

produce

e =
[1, 2, 3]

p =
x^3-6*x^2+11*x-6

f =
(x-1)*(x-2)*(x-3)

Are the eigenvalues sensitive to the perturbations caused by roundoff error
because they are “close together”? Ordinarily, the values 1, 2, and 3 would be
regarded as “well separated.” But, in this case, the separation should be viewed
on the scale of the original matrix. If A were replaced by A/1000, the
eigenvalues, which would be .001, .002, .003, would “seem” to be closer
together.

But eigenvalue sensitivity is more subtle than just “closeness.” With a carefully
chosen perturbation of the matrix, it is possible to make two of its eigenvalues
coalesce into an actual double root that is extremely sensitive to roundoff and
other errors.

Linear Algebra

7-81

One good perturbation direction can be obtained from the outer product of the
left and right eigenvectors associated with the most sensitive eigenvalue. The
following statement creates

E = [130,-390,0;43,-129,0;133,-399,0]

the perturbation matrix

E =
130 -390 0
 43 -129 0
133 -399 0

The perturbation can now be expressed in terms of a single, scalar parameter
t. The statements

syms x t
A = A+t*E

replace A with the symbolic representation of its perturbation.

A =
[-149+130*t, -50-390*t, -154]
[537+43*t, 180-129*t, 546]
[-27+133*t, -9-399*t, -25]

Computing the characteristic polynomial of this new A

p = poly(A)

gives

p =
x^3-6*x^2+11*x-t*x^2+492512*t*x-6-1221271*t

Prettyprinting

pretty(collect(p,x))

shows more clearly that p is a cubic in x whose coefficients vary linearly with t.

3 2
 x + (- t - 6) x + (492512 t + 11) x - 6 - 1221271 t

It turns out that when t is varied over a very small interval, from 0 to 1.0e-6,
the desired double root appears. This can best be seen graphically. The first

7 Symbolic Math Toolbox

7-82

figure shows plots of p, considered as a function of x, for three different values
of t: t = 0, t = 0.5e-6, and t = 1.0e-6. For each value, the eigenvalues are
computed numerically and also plotted.

x = .8:.01:3.2;
for k = 0:2

c = sym2poly(subs(p,t,k*0.5e-6));
y = polyval(c,x);
lambda = eig(double(subs(A,t,k*0.5e-6)));
subplot(3,1,3-k)

 plot(x,y,'-',x,0*x,':',lambda,0*lambda,'o')
axis([.8 3.2 -.5 .5])
text(2.25,.35,['t = ' num2str(k*0.5e-6)]);

end

The bottom subplot shows the unperturbed polynomial, with its three roots at
1, 2, and 3. The middle subplot shows the first two roots approaching each

1 1.5 2 2.5 3
−0.5

0

0.5
t = 0

1 1.5 2 2.5 3
−0.5

0

0.5
t = 5e−007

1 1.5 2 2.5 3
−0.5

0

0.5
t = 1e−006

Linear Algebra

7-83

other. In the top subplot, these two roots have become complex and only one
real root remains.

The next statements compute and display the actual eigenvalues

e = eig(A);
pretty(e)

showing that e(2) and e(3) form a complex conjugate pair.

[1/3]
[1/3 %1 - 3 %2 + 2 + 1/3 t]
[]
[1/3 1/2 1/3]
[- 1/6 %1 + 3/2 %2 + 2 + 1/3 t + 1/2 i 3 (1/3 %1 + 3 %2)]
[]
[1/3 1/2 1/3]
[- 1/6 %1 + 3/2 %2 + 2 + 1/3 t - 1/2 i 3 (1/3 %1 + 3 %2)]

 2 3
%1 := 3189393 t - 2216286 t + t + 3 (-3 + 4432572 t
 2 3
 - 1052829647418 t + 358392752910068940 t
 4 1/2
 - 181922388795 t)

 2
 - 1/3 + 492508/3 t - 1/9 t
%2 := ---------------------------
 1/3
 %1

Next, the symbolic representations of the three eigenvalues are evaluated at
many values of t

tvals = (2:-.02:0)' * 1.e-6;
r = size(tvals,1);
c = size(e,1);
lambda = zeros(r,c);
for k = 1:c

lambda(:,k) = double(subs(e(k),t,tvals));
end

7 Symbolic Math Toolbox

7-84

plot(lambda,tvals)
xlabel('\lambda'); ylabel('t');
title('Eigenvalue Transition')

to produce a plot of their trajectories.

Above t = 0.8e-6, the graphs of two of the eigenvalues intersect, while below
t = 0.8e-6, two real roots become a complex conjugate pair. What is the precise
value of t that marks this transition? Let denote this value of t.

One way to find is based on the fact that, at a double root, both the function
and its derivative must vanish. This results in two polynomial equations to be
solved for two unknowns. The statement

sol = solve(p,diff(p,'x'))

solves the pair of algebraic equations p = 0 and dp/dx = 0 and produces

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

−6

λ

t

Eigenvalue Transition

τ

τ

Linear Algebra

7-85

sol =
 t: [4x1 sym]
 x: [4x1 sym]

Find now by

tau = double(sol.t(2))

which reveals that the second element of sol.t is the desired value of .

format short
tau =

7.8379e-07

Therefore, the second element of sol.x

sigma = double(sol.x(2))

is the double eigenvalue

sigma =
1.5476

Let’s verify that this value of does indeed produce a double eigenvalue at
. To achieve this, substitute for t in the perturbed matrix

 and find the eigenvalues of . That is,

e = eig(double(subs(A,t,tau)))

e =

 1.5476
 1.5476
 2.9047

confirms that is a double eigenvalue of for t = 7.8379e-07.

τ

τ

τ
σ 1.5476= τ
A t() A tE+= A t()

σ 1.5476= A t()

7 Symbolic Math Toolbox

7-86

Solving Equations

Solving Algebraic Equations
If S is a symbolic expression,

solve(S)

attempts to find values of the symbolic variable in S (as determined by
findsym) for which S is zero. For example,

syms a b c x
S = a*x^2 + b*x + c;
solve(S)

uses the familiar quadratic formula to produce

ans =
[1/2/a*(-b+(b^2-4*a*c)^(1/2))]
[1/2/a*(-b-(b^2-4*a*c)^(1/2))]

This is a symbolic vector whose elements are the two solutions.

If you want to solve for a specific variable, you must specify that variable as an
additional argument. For example, if you want to solve S for b, use the
command

b = solve(S,b)

which returns

b =
-(a*x^2+c)/x

Note that these examples assume equations of the form . If you need
to solve equations of the form , you must use quoted strings. In
particular, the command

s = solve('cos(2*x)+sin(x)=1')

returns a vector with four solutions.

f x() 0=
f x() q x()=

Solving Equations

7-87

s =
[0]
[pi]
[1/6*pi]
[5/6*pi]

Several Algebraic Equations
Now let’s look at systems of equations. Suppose we have the system

and we want to solve for x and y. First create the necessary symbolic objects.

syms x y alpha

There are several ways to address the output of solve. One is to use a
two-output call

[x,y] = solve(x^2*y^2, x-y/2-alpha)

which returns

x =
[0]
[0]
[alpha]
[alpha]

y =
[-2*alpha]
[-2*alpha]
[0]
[0]

Consequently, the solution vector

v = [x, y]

x2 y2 0=

x y
2
---– α=

7 Symbolic Math Toolbox

7-88

appears to have redundant components. This is due to the first equation
, which has two solutions in x and y: , . Changing the

equations to

eqs1 = 'x^2*y^2=1, x-y/2-alpha'
[x,y] = solve(eqs1)

produces four distinct solutions.

x =
[1/2*alpha+1/2*(alpha^2+2)^(1/2)]
[1/2*alpha-1/2*(alpha^2+2)^(1/2)]
[1/2*alpha+1/2*(alpha^2-2)^(1/2)]
[1/2*alpha-1/2*(alpha^2-2)^(1/2)]

y =
[-alpha+(alpha^2+2)^(1/2)]
[-alpha-(alpha^2+2)^(1/2)]
[-alpha+(alpha^2-2)^(1/2)]
[-alpha-(alpha^2-2)^(1/2)]

Since we did not specify the dependent variables, solve uses findsym to
determine the variables.

This way of assigning output from solve is quite successful for “small” systems.
Plainly, if we had, say, a 10-by-10 system of equations, typing

[x1,x2,x3,x4,x5,x6,x7,x8,x9,x10] = solve(...)

is both awkward and time consuming. To circumvent this difficulty, solve can
return a structure whose fields are the solutions. In particular, consider the
system u^2-v^2 = a^2, u + v = 1, a^2-2*a = 3. The command

S = solve('u^2-v^2 = a^2','u + v = 1','a^2-2*a = 3')

returns

S =
 a: [2x1 sym]
 u: [2x1 sym]
 v: [2x1 sym]

x2 y2 0= x 0±= y 0±=

Solving Equations

7-89

The solutions for a reside in the “a-field” of S. That is,

S.a

produces

ans =
[-1]
[3]

Similar comments apply to the solutions for u and v. The structure S can now
be manipulated by field and index to access a particular portion of the solution.
For example, if we want to examine the second solution, we can use the
following statement

s2 = [S.a(2), S.u(2), S.v(2)]

to extract the second component of each field.

s2 =
[3, 5, -4]

The following statement

M = [S.a, S.u, S.v]

creates the solution matrix M

M =
[-1, 1, 0]
[3, 5, -4]

whose rows comprise the distinct solutions of the system.

Linear systems of simultaneous equations can also be solved using matrix
division. For example,

clear u v x y
syms u v x y
S = solve(x+2*y-u, 4*x+5*y-v);
sol = [S.x;S.y]

and

7 Symbolic Math Toolbox

7-90

A = [1 2; 4 5];
b = [u; v];
z = A\b

result in

sol =

[-5/3*u+2/3*v]
[4/3*u-1/3*v]

z =
[-5/3*u+2/3*v]
[4/3*u-1/3*v]

Thus s and z produce the same solution, although the results are assigned to
different variables.

Single Differential Equation
The function dsolve computes symbolic solutions to ordinary differential
equations. The equations are specified by symbolic expressions containing the
letter D to denote differentiation. The symbols D2, D3, ... DN, correspond to the
second, third, ..., Nth derivative, respectively. Thus, D2y is the Symbolic Math
Toolbox equivalent of . The dependent variables are those preceded by
D and the default independent variable is t. Note that names of symbolic
variables should not contain D. The independent variable can be changed from
t to some other symbolic variable by including that variable as the last input
argument.

Initial conditions can be specified by additional equations. If initial conditions
are not specified, the solutions contain constants of integration, C1, C2, etc.

The output from dsolve parallels the output from solve. That is, you can call
dsolve with the number of output variables equal to the number of dependent
variables or place the output in a structure whose fields contain the solutions
of the differential equations.

Example 1
The following call to dsolve

dsolve('Dy=1+y^2')

d2 y dt2⁄

Solving Equations

7-91

uses y as the dependent variable and t as the default independent variable.
The output of this command is

ans =
tan(t+C1)

To specify an initial condition, use

y = dsolve('Dy=1+y^2','y(0)=1')

This produces

y =
tan(t+1/4*pi)

Notice that y is in the MATLAB workspace, but the independent variable t is
not. Thus, the command diff(y,t) returns an error. To place t in the
workspace, type syms t.

Example 2
Nonlinear equations may have multiple solutions, even when initial conditions
are given.

x = dsolve('(Dx)^2+x^2=1','x(0)=0')

results in

x =
[-sin(t)]
[sin(t)]

Example 3
Here is a second order differential equation with two initial conditions. The
commands

y = dsolve('D2y=cos(2*x)-y','y(0)=1','Dy(0)=0', 'x')
simplify(y)

produce

y =
-2/3*cos(x)^2+1/3+4/3*cos(x)

7 Symbolic Math Toolbox

7-92

The key issues in this example are the order of the equation and the initial
conditions. To solve the ordinary differential equation

simply type

u = dsolve('D3u=u','u(0)=1','Du(0)=-1','D2u(0) = pi','x')

Use D3u to represent and D2u(0) for .

Several Differential Equations
The function dsolve can also handle several ordinary differential equations in
several variables, with or without initial conditions. For example, here is a pair
of linear, first order equations.

S = dsolve('Df = 3*f+4*g', 'Dg = -4*f+3*g')

The computed solutions are returned in the structure S. You can determine the
values of f and g by typing

f = S.f
f =
exp(3*t)*(cos(4*t)*C1+sin(4*t)*C2)

g = S.g
g =
-exp(3*t)*(sin(4*t)*C1-cos(4*t)*C2)

If you prefer to recover f and g directly as well as include initial conditions,
type

[f,g] = dsolve('Df=3*f+4*g, Dg =-4*f+3*g', 'f(0) = 0, g(0) = 1')

f =
exp(3*t)*sin(4*t)

g =
exp(3*t)*cos(4*t)

x3

3

d

d u u=

u 0() 1 u′ 0(), 1, u″ 0()– π= = =

d3u dx3⁄ u′′ 0()

Solving Equations

7-93

This table details some examples and Symbolic Math Toolbox syntax. Note that
the final entry in the table is the Airy differential equation whose solution is
referred to as the Airy function.

The Airy function plays an important role in the mathematical modeling of the
dispersion of water waves.

Differential Equation MATLAB Command

y = dsolve('Dy+4*y = exp(-t)',
'y(0) = 1')

y = dsolve('D2y+4*y = exp(-2*x)',
'y(0)=0', 'y(pi) = 0', 'x')

(The Airy Equation)

y = dsolve('D2y = x*y','y(0) = 0',
'y(3) = besselk(1/3, 2*sqrt(3))/pi',
'x')

td
dy 4 y t()+ e t–

=

y 0() 1=

x2

2

d

d y 4 y x()+ e 2x–
=

y 0() 0 y π() 0=,=

x2

2

d

d y xy x()=

y 0() 0 y 3() 1
π
---K 1

3

2 3()=,=

7 Symbolic Math Toolbox

7-94

A
MATLAB Quick Reference

Introduction . A-2

General Purpose Commands A-3

Operators and Special Characters A-5

Logical Functions A-5

Language Constructs and Debugging A-5

Elementary Matrices and Matrix Manipulation A-7

Specialized Matrices A-8

Elementary Math Functions A-8

Specialized Math Functions A-9

Coordinate System Conversion A-10

Matrix Functions - Numerical Linear AlgebraA-10

Data Analysis and Fourier Transform Functions . . .A-11

Polynomial and Interpolation Functions A-12

Function Functions - Nonlinear Numerical Methods . .A-13

Sparse Matrix Functions A-14

Sound Processing Functions A-15

Character String Functions A-16

File I/O Functions A-17

Bitwise Functions A-17

Structure Functions A-18

MATLAB Object Functions A-18

MATLAB Interface to Java Functions A-18

Cell Array Functions A-19

Multidimensional Array FunctionsA-19

Data Visualization A-19

Graphical User InterfacesA-24

Serial Port I/O A-25

A

A-2

Introduction
This appendix lists the MATLAB functions as they are grouped in Help by
subject. Each table contains the function names and brief descriptions. For
complete information about any of these functions, refer to Help and either:

• Select the function from the MATLAB Function Reference (Functions by
Category or Alphabetical List of Functions), or

• From the Search tab in the Help Navigator, select Function Name as
Search type, type the function name in the Search for field, and click Go.

Note If you are viewing this book from Help, you can click on any function
name and jump directly to the corresponding MATLAB function page.

General Purpose Commands

A-3

A

General Purpose Commands

This set of functions lets you start and stop
MATLAB, work with files and the operating
system, control the command window, and manage
the environment, variables, and the workspace.

Managing Commands and Functions
addpath Add directories to MATLAB’s

search path
doc Display HTML documentation

in Help browser
docopt Display location of help file

directory for UNIX platforms
genpath Generate a path string
help Display M-file help for

MATLAB functions in the
Command Window

helpbrowser Display Help browser for access
to all MathWorks online help

helpdesk Display Help browser
helpwin Display M-file help and provide

access to M-file help for all
functions

lasterr Last error message
lastwarn Last warning message
license Show MATLAB license number
lookfor Search for specified keyword in

M-file help entries
partialpath Partial pathname
path Control MATLAB’s directory

search path
pathtool Open the GUI for viewing and

modifying MATLAB’s path
profile Start the M-file profiler, a utility

for debugging and optimizing
code

profreport Generate a profile report

rehash Refresh function and file system
caches

rmpath Remove directories from
MATLAB’s search path

support Open MathWorks Technical
Support Web page

type List file
ver Display version information for

MATLAB, Simulink, and
toolboxes

version Get MATLAB version number
web Point Help browser or Web

browser at file or Web site
what List MATLAB-specific files in

current directory
whatsnew Display README files for

MATLAB and toolboxes
which Locate functions and files

Managing Variables and the Workspace

clear Remove items from the
workspace

disp Display text or array
length Length of vector
load Retrieve variables from disk
memory Help for memory limitations
mlock Prevent M-file clearing
munlock Allow M-file clearing
openvar Open workspace variable in

Array Editor for graphical
editing

pack Consolidate workspace memory
save Save workspace variables on

disk
saveas Save figure or model using

specified format

Managing Commands and Functions (Continued)

A MATLAB Quick Reference

A-4

size Array dimensions
who, whos List the variables in the

workspace
workspace Display the Workspace browser,

a GUI for managing the
workspace

Controlling the Command Window
clc Clear Command Window
echo Echo M-files during execution
format Control the display format for

output
home Move cursor to upper left corner

of Command Window
more Control paged output for the

command window

Working with Files and the Operating
Environment
beep Produce a beep sound
cd Change working directory
checkin Check file into source control

system
checkout Check file out of source control

system
cmopts Get name of source control

system, and PVCS project
filename

copyfile Copy file
customverctrl Allow custom source control

system
delete Delete files and graphics objects
diary Save session to a disk file
dir Display a directory listing
edit Edit an M-file
fileparts Get filename parts

Managing Variables and the Workspace
(Continued)

filebrowser Display Current Directory
browser, for viewing files

fullfile Build full filename from parts
info Display contact information or

toolbox Readme files
inmem Functions in memory
ls List directory on UNIX
matlabroot Get root directory of MATLAB

installation
mkdir Make new directory
open Open files based on extension
pwd Display current directory
tempdir Return the name of the system’s

temporary directory
tempname Unique name for temporary file
undocheckout Undo previous checkout from

source control system
unix Execute a UNIX command and

return the result
! Execute operating system

command

Starting and Quitting MATLAB
finish MATLAB termination M-file
exit Terminate MATLAB
matlab Start MATLAB (UNIX systems

only)
matlabrc MATLAB startup M-file
quit Terminate MATLAB
startup MATLAB startup M-file

Working with Files and the Operating
Environment (Continued)

Operators and Special Characters

A-5

Operators and Special Characters

These are the actual operators you use to enter and
manipulate data, for example, matrix
multiplication, array multiplication, and line
continuation.

Logical Functions
This set of functions performs logical operations
such as checking if a file or variable exists and
testing if all elements in an array are nonzero.
“Operators and Special Characters” contains other
operators that perform logical operations.

Language Constructs and Debugging

These functions let you work with MATLAB as a
programming language. For example, you can
control program flow, define global variables,
perform interactive input, and debug your code.

Operators and Special Characters
+ Plus
- Minus
* Matrix multiplication
.* Array multiplication
^ Matrix power
.^ Array power
kron Kronecker tensor product
\ Backslash or left division
/ Slash or right division
./ and .\ Array division, right and left
: Colon
() Parentheses
[] Brackets
{} Curly braces
. Decimal point
... Continuation
, Comma
; Semicolon
% Comment
! Exclamation point
' Transpose and quote
.' Nonconjugated transpose
= Assignment
== Equality
< > Relational operators
& Logical AND
| Logical OR
~ Logical NOT
xor Logical EXCLUSIVE OR

Logical Functions
all Test to determine if all elements

are nonzero
any Test for any nonzeros
exist Check if a variable or file exists
find Find indices and values of

nonzero elements
is* Detect state
isa Detect an object of a given class
iskeyword Test if string is a MATLAB

keyword
isvarname Test if string is a valid variable

name
logical Convert numeric values to

logical
mislocked True if M-file cannot be cleared

MATLAB as a Programming Language

builtin Execute builtin function from
overloaded method

eval Interpret strings containing
MATLAB expressions

evalc Evaluate MATLAB expression
with capture

A MATLAB Quick Reference

A-6

evalin Evaluate expression in
workspace

feval Function evaluation
function Function M-files
global Define global variables
nargchk Check number of input

arguments
persistent Define persistent variable
script Script M-files

Control Flow
break Terminate execution of for loop

or while loop
case Case switch
catch Begin catch block
continue Pass control to the next iteration

of for or while loop
else Conditionally execute

statements
elseif Conditionally execute

statements
end Terminate for, while, switch,

try, and if statements or
indicate last index

error Display error messages
for Repeat statements a specific

number of times
if Conditionally execute

statements
otherwise Default part of switch

statement
return Return to the invoking function
switch Switch among several cases

based on expression
try Begin try block

MATLAB as a Programming Language
(Continued) warning Display warning message

while Repeat statements an indefinite
number of times

Interactive Input
input Request user input
keyboard Invoke the keyboard in an M-file
menu Generate a menu of choices for

user input
pause Halt execution temporarily

Object-Oriented Programming
class Create object or return class of

object
double Convert to double precision
inferiorto Inferior class relationship
inline Construct an inline object
int8, int16, int32 Convert to signed integer
isa Detect an object of a given class
loadobj Extends the load function for

user objects
saveobj Save filter for objects
single Convert to single precision
superiorto Superior class relationship
uint8, uint16,
uint32

Convert to unsigned integer

Debugging
dbclear Clear breakpoints
dbcont Resume execution
dbdown Change local workspace context
dbmex Enable MEX-file debugging
dbquit Quit debug mode
dbstack Display function call stack
dbstatus List all breakpoints

Control Flow (Continued)

Elementary Matrices and Matrix Manipulation

A-7

Elementary Matrices and Matrix
Manipulation

Using these functions you can manipulate
matrices, and access time, date, special variables,
and constants, functions.

dbstep Execute one or more lines from a
breakpoint

dbstop Set breakpoints in an M-file
function

dbtype List M-file with line numbers
dbup Change local workspace context

Function Handles
function_handle MATLAB data type that is a

handle to a function
functions Return information about a

function handle
func2str Constructs a function name string

from a function handle
str2func Constructs a function handle from

a function name string

Elementary Matrices and Arrays
blkdiag Construct a block diagonal

matrix from input arguments
eye Identity matrix
linspace Generate linearly spaced vectors
logspace Generate logarithmically spaced

vectors
numel Number of elements in a matrix

or cell array
ones Create an array of all ones
rand Uniformly distributed random

numbers and arrays
randn Normally distributed random

numbers and arrays

Debugging (Continued)
zeros Create an array of all zeros
: (colon) Regularly spaced vector

Special Variables and Constants
ans The most recent answer
computer Identify the computer on which

MATLAB is running
eps Floating-point relative accuracy
i Imaginary unit
Inf Infinity
inputname Input argument name
j Imaginary unit
NaN Not-a-Number
nargin, nargout Number of function arguments
nargoutchk Validate number of output

arguments
pi Ratio of a circle’s circumference

to its diameter
realmax Largest positive floating-point

number
realmin Smallest positive floating-point

number
varargin,
varargout

Pass or return variable numbers
of arguments

Time and Dates
calendar Calendar
clock Current time as a date vector
cputime Elapsed CPU time
date Current date string
datenum Serial date number
datestr Date string format
datevec Date components
eomday End of month
etime Elapsed time
now Current date and time

Elementary Matrices and Arrays (Continued)

A MATLAB Quick Reference

A-8

Specialized Matrices

These functions let you work with matrices such as
Hadamard, Hankel, Hilbert, and magic squares.

Elementary Math Functions

These are many of the standard mathematical
functions such as trigonometric, hyperbolic,
logarithmic, and complex number manipulation.

tic, toc Stopwatch timer
weekday Day of the week

Matrix Manipulation
cat Concatenate arrays
diag Diagonal matrices and diagonals

of a matrix
fliplr Flip matrices left-right
flipud Flip matrices up-down
repmat Replicate and tile an array
reshape Reshape array
rot90 Rotate matrix 90 degrees
tril Lower triangular part of a

matrix
triu Upper triangular part of a

matrix
: (colon) Index into array, rearrange

array

Vector Functions
cross Vector cross product
dot Vector dot product
intersect Set intersection of two vectors
ismember Detect members of a set
setdiff Return the set difference of two

vectors
setxor Set exclusive or of two vectors
union Set union of two vectors
unique Unique elements of a vector

Time and Dates (Continued)

Specialized Matrices
compan Companion matrix
gallery Test matrices
hadamard Hadamard matrix
hankel Hankel matrix
hilb Hilbert matrix
invhilb Inverse of the Hilbert matrix
magic Magic square
pascal Pascal matrix
toeplitz Toeplitz matrix
wilkinson Wilkinson’s eigenvalue test

matrix

Elementary Math Functions
abs Absolute value and complex

magnitude
acos, acosh Inverse cosine and inverse

hyperbolic cosine
acot, acoth Inverse cotangent and inverse

hyperbolic cotangent
acsc, acsch Inverse cosecant and inverse

hyperbolic cosecant
angle Phase angle
asec, asech Inverse secant and inverse

hyperbolic secant
asin, asinh Inverse sine and inverse

hyperbolic sine

Specialized Math Functions

A-9

Specialized Math Functions

This set of functions includes Bessel, elliptic,
gamma, factorial, and others.

atan, atanh Inverse tangent and inverse
hyperbolic tangent

atan2 Four-quadrant inverse tangent
ceil Round toward infinity
complex Construct complex data from

real and imaginary components
conj Complex conjugate
cos, cosh Cosine and hyperbolic cosine
cot, coth Cotangent and hyperbolic

cotangent
csc, csch Cosecant and hyperbolic

cosecant
exp Exponential
fix Round towards zero
floor Round towards minus infinity
gcd Greatest common divisor
imag Imaginary part of a complex

number
lcm Least common multiple
log Natural logarithm
log2 Base 2 logarithm and dissect

floating-point numbers into
exponent and mantissa

log10 Common (base 10) logarithm
mod Modulus (signed remainder

after division)
nchoosek Binomial coefficient or all

combinations
real Real part of complex number
rem Remainder after division
round Round to nearest integer
sec, sech Secant and hyperbolic secant
sign Signum function
sin, sinh Sine and hyperbolic sine
sqrt Square root
tan, tanh Tangent and hyperbolic tangent

Elementary Math Functions (Continued)

Specialized Math Functions
airy Airy functions
besselh Bessel functions of the third

kind (Hankel functions)
besseli, besselk Modified Bessel functions
besselj, bessely Bessel functions
beta, betainc,
betaln

beta, betainc, betaln

ellipj Jacobi elliptic functions
ellipke Complete elliptic integrals of the

first and second kind
erf, erfc, erfcx,
erfinv

Error functions

expint Exponential integral
factorial Factorial function
gamma, gammainc,
gammaln

Gamma functions

legendre Associated Legendre functions
pow2 Base 2 power and scale

floating-point numbers
rat, rats Rational fraction approximation

A MATLAB Quick Reference

A-10

Coordinate System Conversion

Using these functions you can transform Cartesian
coordinates to polar, cylindrical, or spherical, and
vice versa.

Matrix Functions - Numerical Linear
Algebra

These functions let you perform matrix analysis
including matrix determinant, rank, reduced row
echelon form, eigenvalues, and inverses.

Coordinate System Conversion
cart2pol Transform Cartesian

coordinates to polar or
cylindrical

cart2sph Transform Cartesian
coordinates to spherical

pol2cart Transform polar or cylindrical
coordinates to Cartesian

sph2cart Transform spherical coordinates
to Cartesian

Matrix Analysis
cond Condition number with respect

to inversion
condeig Condition number with respect

to eigenvalues
det Matrix determinant
norm Vector and matrix norms
null Null space of a matrix
orth Range space of a matrix
rank Rank of a matrix
rcond Matrix reciprocal condition

number estimate
rref, rrefmovie Reduced row echelon form
subspace Angle between two subspaces
trace Sum of diagonal elements

Linear Equations
chol Cholesky factorization
inv Matrix inverse
lscov Least squares solution in the

presence of known covariance
lu LU matrix factorization
lsqnonneg Nonnegative least squares
minres Minimum Residual Method
pinv Moore-Penrose pseudoinverse of

a matrix
qr Orthogonal-triangular

decomposition
symmlq Symmetric LQ method

Eigenvalues and Singular Values
balance Improve accuracy of computed

eigenvalues
cdf2rdf Convert complex diagonal form

to real block diagonal form
eig Eigenvalues and eigenvectors
gsvd Generalized singular value

decomposition
hess Hessenberg form of a matrix
poly Polynomial with specified roots
qz QZ factorization for generalized

eigenvalues
rsf2csf Convert real Schur form to

complex Schur form
schur Schur decomposition
svd Singular value decomposition

Matrix Functions
expm Matrix exponential
funm Evaluate general matrix

function
logm Matrix logarithm
sqrtm Matrix square root

Data Analysis and Fourier Transform Functions

A-11

Data Analysis and Fourier Transform
Functions

Using the data analysis functions, you can find
permutations, prime numbers, mean, median,
variance, correlation, and perform convolutions
and other standard array manipulations. A set of
vector functions lets you operate on vectors to find
cross product, union, and other standard vector
manipulations. The Fourier transform functions
let you perform discrete Fourier transformations
in one or more dimensions and their inverses.

Low Level Functions
qrdelete Delete column from QR

factorization
qrinsert Insert column in QR

factorization

Basic Operations
cumprod Cumulative product
cumsum Cumulative sum
cumtrapz Cumulative trapezoidal

numerical integration
factor Prime factors
inpolygon Detect points inside a polygonal

region
max Maximum elements of an array
mean Average or mean value of arrays
median Median value of arrays
min Minimum elements of an array
perms All possible permutations
polyarea Area of polygon
primes Generate list of prime numbers
prod Product of array elements
rectint Rectangle intersection area
sort Sort elements in ascending

order
sortrows Sort rows in ascending order

std Standard deviation
sum Sum of array elements
trapz Trapezoidal numerical

integration
var Variance

Finite Differences
del2 Discrete Laplacian
diff Differences and approximate

derivatives
gradient Numerical gradient

Correlation
corrcoef Correlation coefficients
cov Covariance matrix

Filtering and Convolution
conv Convolution and polynomial

multiplication
conv2 Two-dimensional convolution
deconv Deconvolution and polynomial

division
filter Filter data with an infinite

impulse response (IIR) or finite
impulse response (FIR) filter

filter2 Two-dimensional digital
filtering

Fourier Transforms
abs Absolute value and complex

magnitude
angle Phase angle
cplxpair Sort complex numbers into

complex conjugate pairs
fft One-dimensional fast Fourier

transform

Basic Operations (Continued)

A MATLAB Quick Reference

A-12

Polynomial and Interpolation
Functions

These functions let you operate on polynomials
such as multiply, divide, find derivatives, and
evaluate. The data interpolation functions let you
perform interpolation in one, two, three, and
higher dimensions.

fft2 Two-dimensional fast Fourier
transform

fftshift Shift DC component of fast
Fourier transform to center of
spectrum

ifft Inverse one-dimensional fast
Fourier transform

ifft2 Inverse two-dimensional fast
Fourier transform

ifftn Inverse multidimensional fast
Fourier transform

ifftshift Inverse FFT shift
nextpow2 Next power of two
unwrap Correct phase angles

 Vector Functions
cross Vector cross product
intersect Set intersection of two vectors
ismember Detect members of a set
setdiff Return the set difference of two

vector
setxor Set exclusive or of two vectors
union Set union of two vectors
unique Unique elements of a vector

Fourier Transforms (Continued)
Polynomials
conv Convolution and polynomial

multiplication
deconv Deconvolution and polynomial

division
poly Polynomial with specified roots
polyder Polynomial derivative
polyeig Polynomial eigenvalue problem
polyfit Polynomial curve fitting
polyint Analytic polynomial integration
polyval Polynomial evaluation
polyvalm Matrix polynomial evaluation
residue Convert between partial fraction

expansion and polynomial
coefficients

roots Polynomial roots

Data Interpolation
convhull Convex hull
convhulln Multidimensional convex hull
delaunay Delaunay triangulation
delaunay3 3-D Delaunay tessellation
delaunayn Multidimensional Delaunay

tessellation
dsearch Search for nearest point
dsearchn Multidimensional closest point

search
griddata Data gridding
griddata3 Data gridding and hypersurface

fitting for three-dimensional
data

griddatan Data gridding and hypersurface
fitting (dimension >= 2)

interp1 One-dimensional data
interpolation (table lookup)

interp2 Two-dimensional data
interpolation (table lookup)

Function Functions - Nonlinear Numerical Methods

A-13

Function Functions - Nonlinear
Numerical Methods

Using these functions you can solve differential
equations, perform numerical evaluation of
integrals, and optimize functions.

interp3 Three-dimensional data
interpolation (table lookup)

interpft One-dimensional interpolation
using the FFT method

interpn Multidimensional data
interpolation (table lookup)

meshgrid Generate X and Y matrices for
three-dimensional plots

ndgrid Generate arrays for
multidimensional functions and
interpolation

pchip Piecewise Cubic Hermite
Interpolating Polynomial
(PCHIP)

ppval Piecewise polynomial evaluation
spline Cubic spline interpolation
tsearch Search for enclosing Delaunay

triangle
tsearchn Multidimensional closest

simplex search
voronoi Voronoi diagram
voronoin Multidimensional Voronoi

diagrams

Function Functions - Nonlinear Numerical
Methods
bvp4c Solve two-point boundary value

problems (BVPs) for ordinary
differential equations (ODEs)

bvpget Extract parameters from BVP
options structure

bvpinit Form the initial guess for bvp4c

Data Interpolation (Continued)

bvpset Create/alter BVP options
structure

bvpval Evaluate the solution computed
by bvp4c

dblquad Numerical evaluation of double
integrals

fminbnd Minimize a function of one
variable

fminsearch Minimize a function of several
variables

fzero Find zero of a function of one
variable

ode45, ode23,
ode113, ode15s,
ode23s, ode23t,
ode23tb

Solve initial value problems for
ODEs

odeget Extract parameters from ODE
options structure

odeset Create/alter ODE options
structure

optimget Get optimization options
structure parameter values

optimset Create or edit optimization
options parameter structure

pdepe Solve initial-boundary value
problems

pdeval Evaluate the solution computed
by pdepe

quad Numerical evaluation of integrals,
adaptive Simpson quadrature

quadl Numerical evaluation of
integrals, adaptive Lobatto
quadrature

vectorize Vectorize expression

Function Functions - Nonlinear Numerical
Methods (Continued)

A MATLAB Quick Reference

A-14

Sparse Matrix Functions

These functions allow you to operate on a special
type of matrix, sparse. Using these functions you
can convert full to sparse, visualize, and operate on
these matrices.

Elementary Sparse Matrices
spdiags Extract and create sparse band

and diagonal matrices
speye Sparse identity matrix
sprand Sparse uniformly distributed

random matrix
sprandn Sparse normally distributed

random matrix
sprandsym Sparse symmetric random

matrix

Full to Sparse Conversion
find Find indices and values of

nonzero elements
full Convert sparse matrix to full

matrix
sparse Create sparse matrix
spconvert Import matrix from sparse

matrix external format

Working with Nonzero Entries of Sparse
Matrices
nnz Number of nonzero matrix

elements
nonzeros Nonzero matrix elements
nzmax Amount of storage allocated for

nonzero matrix elements
spalloc Allocate space for sparse matrix
spfun Apply function to nonzero sparse

matrix elements
spones Replace nonzero sparse matrix

elements with ones

Visualizing Sparse Matrices
spy Visualize sparsity pattern

Reordering Algorithms
colamd Column approximate minimum

degree permutation
colmmd Sparse column minimum degree

permutation
colperm Sparse column permutation

based on nonzero count
dmperm Dulmage-Mendelsohn

decomposition
randperm Random permutation
symamd Symmetric approximate

minimum degree permutation
symmmd Sparse symmetric minimum

degree ordering
symrcm Sparse reverse Cuthill-McKee

ordering

Norm, Condition Number, and Rank
condest 1-norm matrix condition number

estimate
normest 2-norm estimate

Sparse Systems of Linear Equations
bicg BiConjugate Gradients method
bicgstab BiConjugate Gradients

Stabilized method
cgs Conjugate Gradients Squared

method
cholinc Sparse Incomplete Cholesky and

Cholesky-Infinity factorizations
cholupdate Rank 1 update to Cholesky

factorization
gmres Generalized Minimum Residual

method (with restarts)

Sound Processing Functions

A-15

Sound Processing Functions

The sound processing functions let you convert
signals, and read and write .au and .wav sound
files.

lsqr LSQR implementation of
Conjugate Gradients on the
normal equations

luinc Incomplete LU matrix
factorizations

pcg Preconditioned Conjugate
Gradients method

qmr Quasi-Minimal Residual method
qr Orthogonal-triangular

decomposition
qrdelete Delete column from QR

factorization
qrinsert Insert column in QR

factorization
qrupdate Rank 1 update to QR

factorization

Sparse Eigenvalues and Singular Values
eigs Find eigenvalues and

eigenvectors
svds Find singular values

Miscellaneous
spparms Set parameters for sparse

matrix routines

Sparse Systems of Linear Equations (Continued)

General Sound Functions
lin2mu Convert linear audio signal to

mu-law
mu2lin Convert mu-law audio signal to

linear
sound Convert vector into sound
soundsc Scale data and play as sound

SPARCstation-Specific Sound Functions
auread Read NeXT/SUN (.au) sound file
auwrite Write NeXT/SUN (.au) sound

file

.WAV Sound Functions
wavplay Play recorded sound on a

PC-based audio output device
wavread Read Microsoft WAVE (.wav)

sound file
wavrecord Record sound using a PC-based

audio input device
wavwrite Write Microsoft WAVE (.wav)

sound file

A MATLAB Quick Reference

A-16

Character String Functions

This set of functions lets you manipulate strings
such as comparison, concatenation, search, and
conversion.

General
abs Absolute value and complex

magnitude
eval Interpret strings containing

MATLAB expressions
real Real part of complex number
strings MATLAB string handling

String to Function Handle Conversion
func2str Constructs a function name

string from a function handle
str2func Constructs a function handle

from a function name string

String Manipulation
deblank Strip trailing blanks from the

end of a string
findstr Find one string within another
lower Convert string to lower case
strcat String concatenation
strcmp Compare strings
strcmpi Compare strings ignoring case
strjust Justify a character array
strmatch Find possible matches for a

string
strncmp Compare the first n characters

of two strings
strncmpi Compare the first n characters

of strings, ignoring case
strrep String search and replace
strtok First token in string
strvcat Vertical concatenation of strings

symvar Determine symbolic variables in
an expression

texlabel Produce the TeX format from a
character string

upper Convert string to upper case

String to Number Conversion
char Create character array (string)
int2str Integer to string conversion
mat2str Convert a matrix into a string
num2str Number to string conversion
sprintf Write formatted data to a string
sscanf Read string under format

control
str2double Convert string to

double-precision value
str2mat String to matrix conversion
str2num String to number conversion

Radix Conversion
bin2dec Binary to decimal number

conversion
dec2bin Decimal to binary number

conversion
dec2hex Decimal to hexadecimal number

conversion
hex2dec Hexadecimal to decimal number

conversion
hex2num Hexadecimal to double number

conversion

String Manipulation (Continued)

File I/O Functions

A-17

File I/O Functions

The file I/O functions allow you to open and close
files, read and write formatted and unformatted
data, operate on files, and perform other
specialized file I/O such as reading and writing
images and spreadsheets.

Bitwise Functions

These functions let you operate at the bit level
such as shifting and complementing.

File Opening and Closing
fclose Close one or more open files
fopen Open a file or obtain information

about open files

Unformatted I/O
fread Read binary data from file
fwrite Write binary data to a file

Formatted I/O
fgetl Return the next line of a file as a

string without line terminator(s)
fgets Return the next line of a file as a

string with line terminator(s)
fprintf Write formatted data to file
fscanf Read formatted data from file

File Positioning
feof Test for end-of-file
ferror Query MATLAB about errors in

file input or output
frewind Rewind an open file
fseek Set file position indicator
ftell Get file position indicator

String Conversion
sprintf Write formatted data to a string
sscanf Read string under format

control

Specialized File I/O
dlmread Read an ASCII delimited file

into a matrix
dlmwrite Write a matrix to an ASCII

delimited file
hdf HDF interface
imfinfo Return information about a

graphics file
imread Read image from graphics file
imwrite Write an image to a graphics file
strread Read formatted data from a

string
textread Read formatted data from text

file
wk1read Read a Lotus123 WK1

spreadsheet file into a matrix
wk1write Write a matrix to a Lotus123

WK1 spreadsheet file

Bitwise Functions
bitand Bit-wise AND
bitcmp Complement bits
bitor Bit-wise OR
bitmax Maximum floating-point integer
bitset Set bit
bitshift Bit-wise shift
bitget Get bit
bitxor Bit-wise XOR

A MATLAB Quick Reference

A-18

Structure Functions

Structures are arrays whose elements can hold any
MATLAB data type such as text, numeric arrays,
or other structures. You access structure elements
by name. Use the structure functions to create and
operate on this array type.

MATLAB Object Functions

Using the object functions you can create objects,
detect objects of a given class, and return the class
of an object.

MATLAB Interface to Java Functions
These functions allow you to bring Java classes
into MATLAB, construct objects, and call and save
methods.

Structure Functions
deal Deal inputs to outputs
fieldnames Field names of a structure
getfield Get field of structure array
rmfield Remove structure fields
setfield Set field of structure array
struct Create structure array
struct2cell Structure to cell array

conversion

Object Functions
class Create object or return class of

object
isa Detect an object of a given class
methods Display method names
methodsview Displays information on all

methods implemented by a class
subsasgn Overloaded method for A(I)=B,

A{I}=B, and A.field=B
subsindex Overloaded method for X(A)
subsref Overloaded method for A(I), A{I}

and A.field

Interface to Java Functions
class Create object or return class of

object
import Add a package or class to the

current Java import list
isa Detect an object of a given class
isjava Test whether an object is a Java

object
javaArray Constructs a Java array
javaMethod Invokes a Java method
javaObject Constructs a Java object
methods Display method names
methodsview Display information on all

methods imple.mented by a
class

Cell Array Functions

A-19

Cell Array Functions

Cell arrays are arrays comprised of cells, which
can hold any MATLAB data type such as text,
numeric arrays, or other cell arrays. Unlike
structures, you access these cells by number. Use
the cell array functions to create and operate on
these arrays.

Multidimensional Array Functions

These functions provide a mechanism for working
with arrays of dimension greater than 2.

Data Visualization

This extensive set of functions gives you the ability
to create basic graphs such as bar, pie, polar, and
three-dimensional plots, and advanced graphs
such as surface, mesh, contour, and volume
visualization plots. In addition, you can use these
functions to control lighting, color, view, and many
other fine manipulations.

Cell Array Functions
cell Create cell array
cellfun Apply a function to each element

in a cell array
cellstr Create cell array of strings from

character array
cell2struct Cell array to structure array

conversion
celldisp Display cell array contents
cellplot Graphically display the

structure of cell arrays
num2cell Convert a numeric array into a

cell array

Multidimensional Array Functions
cat Concatenate arrays
flipdim Flip array along a specified

dimension
ind2sub Subscripts from linear index
ipermute Inverse permute the dimensions

of a multidimensional array
ndgrid Generate arrays for

multidimensional functions and
interpolation

ndims Number of array dimensions

permute Rearrange the dimensions of a
multidimensional array

reshape Reshape array
shiftdim Shift dimensions
squeeze Remove singleton dimensions
sub2ind Single index from subscripts

Basic Plots and Graphs
bar Vertical bar chart
barh Horizontal bar chart
hist Plot histograms
histc Histogram count
hold Hold current graph
loglog Plot using log-log scales
pie Pie plot
plot Plot vectors or matrices.
polar Polar coordinate plot
semilogx Semi-log scale plot
semilogy Semi-log scale plot
subplot Create axes in tiled positions

 Three-Dimensional Plotting
bar3 Vertical 3-D bar chart
bar3h Horizontal 3-D bar chart
comet3 3-D comet plot
cylinder Generate cylinder

Multidimensional Array Functions (Continued)

A MATLAB Quick Reference

A-20

fill3 Draw filled 3-D polygons in
3-space

plot3 Plot lines and points in 3-D
space

quiver3 Three-dimensional quiver (or
velocity) plot

slice Volumetric slice plot
sphere Generate sphere
stem3 Plot discrete surface data
waterfall Waterfall plot

Plot Annotation and Grids
clabel Add contour labels to a contour

plot
datetick Date formatted tick labels
grid Grid lines for 2-D and 3-D plots
gtext Place text on a 2-D graph using

a mouse
legend Graph legend for lines and

patches
plotedit Start plot edit mode to edit and

annotate plots
plotyy Plot graphs with Y tick labels on

the left and right
title Titles for 2-D and 3-D plots
xlabel X-axis labels for 2-D and 3-D

plots
ylabel Y-axis labels for 2-D and 3-D

plots
zlabel Z-axis labels for 3-D plots

Surface, Mesh, and Contour Plots
contour Contour (level curves) plot
contourc Contour computation
contourf Filled contour plot
hidden Mesh hidden line removal mode
meshc Combination mesh/contourplot

 Three-Dimensional Plotting (Continued)
mesh 3-D mesh with reference plane
peaks A sample function of two

variables
surf 3-D shaded surface graph
surface Create surface low-level objects
surfc Combination surf/contourplot
surfl 3-D shaded surface with lighting
trimesh Triangular mesh plot
trisurf Triangular surface plot

Volume Visualization
coneplot Plot velocity vectors as cones in

3-D vector field
contourslice Draw contours in volume slice

plane
curl Compute the curl and angular

velocity of a vector field
divergence Compute the divergence of a

vector field
flow Generate scalar volume data
interpstreamspeed Interpolate streamline vertices

from vector-field magnitudes
isocaps Compute isosurface end-cap

geometry
isocolors Compute the colors of isosurface

vertices
isonormals Compute normals of isosurface

vertices
isosurface Extract isosurface data from

volume data
reducepatch Reduce the number of patch

faces
reducevolume Reduce number of elements in

volume data set
shrinkfaces Reduce the size of patch faces
slice Draw slice planes in volume
smooth3 Smooth 3-D data

Surface, Mesh, and Contour Plots (Continued)

Data Visualization

A-21

stream2 Compute 2-D stream line data
stream3 Compute 3-D stream line data
streamline Draw stream lines from 2- or

3-D vector data
streamparticles Draw stream particles from

vector volume data
streamribbon Draw stream ribbons from

vector volume data
streamslice Draw well-spaced stream lines

from vector volume data
streamtube Draw stream tubes from vector

volume data
surf2patch Convert surface data to patch

data
subvolume Extract subset of volume data

set

Domain Generation
griddata Data gridding and surface

fitting
meshgrid Generation of X and Y arrays for

3-D plots

Specialized Plotting
area Area plot
box Axis box for 2-D and 3-D plots
comet Comet plot
compass Compass plot
convhull Convex hull
delaunay Delaunay triangulation
dsearch Search Delaunay triangulation

for nearest point
errorbar Plot graph with error bars
ezcontour Easy to use contour plotter
ezcontourf Easy to use filled contour plotter
ezmesh Easy to use 3-D mesh plotter

Volume Visualization (Continued)
ezmeshc Easy to use combination mesh/

contour plotter
ezplot Easy to use function plotter
ezplot3 Easy to use 3-D parametric

curve plotter
ezpolar Easy to use polar coordinate

plotter
ezsurf Easy to use 3-D colored surface

plotter
ezsurfc Easy to use combination surface/

contour plotter
feather Feather plot
fill Draw filled 2-D polygons
fplot Plot a function
inpolygon True for points inside a

polygonal region
pareto Pareto char
pcolor Pseudocolor (checkerboard) plot
pie3 3-D pie plot
plotmatrix Scatter plot matrix
polyarea Area of polygon
quiver Quiver (or velocity) plot
ribbon Ribbon plot
rose Plot rose or angle histogram
scatter Scatter plot
scatter3 3-D scatter plot
stairs Stairstep graph
stem Plot discrete sequence data
tsearch Search for enclosing Delaunay

triangle
voronoi Voronoi diagram

Specialized Plotting (Continued)

A MATLAB Quick Reference

A-22

View Control
camdolly Move camera position and target
camlookat View specific objects
camorbit Orbit about camera target
campan Rotate camera target about

camera position
campos Set or get camera position
camproj Set or get projection type
camroll Rotate camera about viewing

axis
camtarget Set or get camera target
camup Set or get camera up-vector
camva Set or get camera view angle
camzoom Zoom camera in or out
daspect Set or get data aspect ratio
pbaspect Set or get plot box aspect ratio
view 3-D graph viewpoint

specification.
viewmtx Generate view transformation

matrices
xlim Set or get the current x-axis

limits
ylim Set or get the current y-axis

limits
zlim Set or get the current z-axis

limits

Lighting
camlight Create or position a light
light Light object creation function
lightangle Spherical position of a light
lighting Lighting mode
material Material reflectance mode

Transparency
alpha Set or query transparency

properties for objects in current
axes

alphamap Specify the figure alphamap
alim Set or query the axes alpha

limits

Color Operations
brighten Brighten or darken color map
caxis Pseudocolor axis scaling
colorbar Display color bar (color scale)
colordef Set up color defaults
colormap Set the color look-up table (list of

colormaps)
graymon Graphics figure defaults set for

grayscale monitor
hsv2rgb Hue-saturation-value to

red-green-blue conversion
rgb2hsv RGB to HSV conversion
rgbplot Plot color map
shading Color shading mode
spinmap Spin the colormap
surfnorm 3-D surface normals
whitebg Change axes background color

for plots

Colormaps
autumn Shades of red and yellow color

map
bone Gray-scale with a tinge of blue

color map
contrast Gray color map to enhance

image contrast
cool Shades of cyan and magenta

color map
copper Linear copper-tone color map

Data Visualization

A-23

flag Alternating red, white, blue, and
black color map

gray Linear gray-scale color map
hot Black-red-yellow-white color

map
hsv Hue-saturation-value (HSV)

color map
jet Variant of HSV
lines Line color colormap
prism Colormap of prism colors
spring Shades of magenta and yellow

color map
summer Shades of green and yellow

colormap
winter Shades of blue and green color

map

Printing
orient Hardcopy paper orientation
pagesetupdlg Page position dialog box
print Print graph or save graph to file
printdlg Print dialog box
printopt Configure local printer defaults
saveas Save figure to graphic file

Handle Graphics, General
allchild Find all children of specified

objects
copyobj Make a copy of a graphics object

and its children
findall Find all graphics objects

(including hidden handles)
findobj Find objects with specified

property values
gcbo Return object whose callback is

currently executing
gco Return handle of current object

Colormaps (Continued)
get Get object properties
ishandle True for graphics objects
rotate Rotate objects about specified

origin and direction
set Set object properties

Working with Application Data
getappdata Get value of application data
isappdata True if application data exists
rmappdata Remove application data
setappdata Specify application data

Handle Graphics, Object Creation
axes Create axes object
figure Create figure (graph) windows
image Create image (2-D matrix)
light Create light object (illuminates

patch and surface)
line Create line object (3-D polylines)
patch Create patch object (polygons)
rectangle Create rectangle object (2-D

rectangle)
surface Create surface (quadrilaterals)
text Create text object (character

strings)
uicontextmenu Create context menu (pop-up

associated with object)

Handle Graphics, Figure Windows
capture Screen capture of the current

figure
clc Clear figure window
clf Clear figure
close Close specified window
closereq Default close request function
gcf Get current figure handle

Handle Graphics, General (Continued)

A MATLAB Quick Reference

A-24

Graphical User Interfaces

The graphical user interface functions let you build
your own interfaces for your applications.

newplot Graphics M-file preamble for
NextPlot property

refresh Refresh figure
saveas Save figure or model to desired

output format

Handle Graphics, Axes
axis Plot axis scaling and appearance
cla Clear axes
gca Get current axes handle

Object Manipulation
reset Reset axis or figure
rotate3d Interactively rotate the view of a

3-D plot
selectmoveresize Interactively select, move, or

resize objects

Interactive User Input
ginput Graphical input from a mouse or

cursor
zoom Zoom in and out on a 2-D plot

Region of Interest
dragrect Drag XOR rectangles with

mouse
drawnow Complete any pending drawing
rbbox Rubberband box

Handle Graphics, Figure Windows (Continued)

Dialog Boxes
dialog Create a dialog box
errordlg Create error dialog box
helpdlg Display help dialog box
inputdlg Create input dialog box
listdlg Create list selection dialog box
msgbox Create message dialog box
pagedlg Display page layout dialog box
printdlg Display print dialog box
questdlg Create question dialog box
uigetfile Display dialog box to retrieve

name of file for reading
uiputfile Display dialog box to retrieve

name of file for writing
uisetcolor Interactively set a ColorSpec

using a dialog box
uisetfont Interactively set a font using a

dialog box
warndlg Create warning dialog box

User Interface Deployment
guidata Store or retrieve application

data
guihandles Create a structure of handles
movegui Move GUI figure onscreen
openfig Open or raise GUI figure

User Interface Development
guide Open the GUI Layout Editor
inspect Display Property Inspector

Serial Port I/O

A-25

Serial Port I/O
These functions provides direct access to
peripheral devices that you connect to your
computer’s serial port.

User Interface Objects
menu Generate a menu of choices for

user input
uicontextmenu Create context menu
uicontrol Create user interface control
uimenu Create user interface menu

Other Functions
dragrect Drag rectangles with mouse
findfigs Display off-screen visible figure

windows
gcbf Return handle of figure

containing callback object
gcbo Return handle of object whose

callback is executing
rbbox Create rubberband box for area

selection
selectmoveresize Select, move, resize, or copy axes

and uicontrol graphics objects
textwrap Return wrapped string matrix

for given uicontrol
uiresume Used with uiwait, controls

program execution
uiwait Used with uiresume, controls

program execution
waitbar Display wait bar
waitforbuttonpress Wait for key/buttonpress over

figure

Creating a Serial Port Object
serial Create a serial port object

Writing and Reading Data
fgetl Read one line of text from the

device and discard the
terminator

fgets Read one line of text from the
device and include the
terminator

fprintf Write text to the device
fread Read binary data from the

device
fscanf Read data from the device, and

format as text
fwrite Write binary data to the device
readasync Read data asynchronously from

the device
stopasync Stop asynchronous and write

operations

Configuring and Returning Properties
get Return serial port object

properties
set Configure or display serial port

object properties

State Change
fclose Disconnect a serial port object

from the device
fopen Connect a serial port object to

the device
record Record data and event

information to a file

A MATLAB Quick Reference

A-26

General Purpose
clear Remove a serial port object from

the MATLAB workspace
delete Remove a serial port object from

memory
disp Display serial port object

summary information
instraction Display event information when

an event occurs
instrfind Return serial port objects from

memory to the MATLAB
workspace

isvalid Determine if serial port objects
are valid

length Length of serial port object array
load Load serial port objects and

variables into the MATLAB
workspace

save Save serial port objects and
variables to a MAT-file

serialbreak Send a break to the device
connected to the serial port

size Size of serial port object array

B
Symbolic Math Toolbox
Quick Reference

Introduction . B-2

Arithmetic Operations B-3

Basic Operations B-3

Calculus . . B-3

Conversions . B-3

Integral Transforms B-3

Linear Algebra B-3

Pedagogical and Graphical Applications B-4

Simplification B-4

Solution of Equations B-4

Special Functions B-4

Variable Precision Arithmetic B-4

B Symbolic Math Toolbox Quick Reference

B-2

Introduction
This appendix lists the Symbolic Math Toolbox functions that are available in
the Student Version of MATLAB & Simulink. For complete information about
any of these functions, use Help and select Reference from the Symbolic Math
Toolbox.

Note All of the functions listed in Symbolic Math Toolbox Reference are
available in the Student Version of MATLAB & Simulink except maple,
mapleinit, mfun, mfunlist, and mhelp.

Symbolic Math Toolbox Quick Reference

B-3

B

Arithmetic Operations
+ Addition
- Subtraction
* Multiplication
.* Array multiplication
/ Right division
./ Array right division
\ Left division
.\ Array left division
^ Matrix or scalar raised to a power
.^ Array raised to a power
‘ Complex conjugate transpose
.’ Real transpose

Basic Operations
ccode C code representation of a

symbolic expression
conj Complex conjugate
findsym Determine symbolic variables
fortran Fortran representation of a

symbolic expression
imag Imaginary part of a complex

number
latex LaTeX representation of a

symbolic expression
pretty Pretty print a symbolic expression
real Real part of an imaginary number
sym Create symbolic object
syms Shortcut for creating multiple

symbolic objects

Calculus
diff Differentiate
int Integrate
jacobian Jacobian matrix
limit Limit of an expression

symsum Summation of series
taylor Taylor series expansion

Conversions
char Convert sym object to string
double Convert symbolic matrix to double

poly2sym Function calculator
sym2poly Symbolic polynomial to coefficient

vector

Integral Transforms
fourier Fourier transform
ifourier Inverse Fourier transform
ilaplace Inverse Laplace transform
iztrans Inverse z-transform
laplace Laplace transform
ztrans z-transform

Linear Algebra
colspace Basis for column space
det Determinant
diag Create or extract diagonals
eig Eigenvalues and eigenvectors
expm Matrix exponential
inv Matrix inverse
jordan Jordan canonical form
null Basis for null space
poly Characteristic polynomial
rank Matrix rank
rref Reduced row echelon form
svd Singular value decomposition
tril Lower triangle
triu Upper triangle

Calculus (Continued)

B Symbolic Math Toolbox Quick Reference

B-4

Pedagogical and Graphical Applications
ezcontour Contour plotter
ezcontourf Filled contour plotter
ezmesh Mesh plotter
ezmeshc Combined mesh and contour

plotter
ezplot Function plotter
ezplot Easy-to-use function plotter
ezplot3 3-D curve plotter
ezpolar Polar coordinate plotter
ezsurf Surface plotter
ezsurfc Combined surface and contour

plotter
funtool Function calculator
rsums Riemann sums
taylortool Taylor series calculator

Simplification
collect Collect common terms
expand Expand polynomials and

elementary functions
factor Factor
horner Nested polynomial representation
numden Numerator and denominator
simple Search for shortest form
simplify Simplification
subexpr Rewrite in terms of

subexpressions

Solution of Equations
compose Functional composition
dsolve Solution of differential equations
finverse Functional inverse
solve Solution of algebraic equations

Special Functions
cosint Cosine integral, Ci(x)

lambertw Solution of
sinint Sine integral, Si(x)

zeta Riemann zeta function

Variable Precision Arithmetic
digits Set variable precision accuracy
vpa Variable precision arithmetic

λ x()eλ x() x=

I-1

Index

Symbols
: operator 4-7
@sym directory 7-15
\ 7-65, 7-66

A
abstract functions 7-10
Airy differential equation 7-93
Airy function 7-93
algorithms

vectorizing 6-23
animation 5-37
annotating plots 5-14
ans 4-4
Application Program Interface (API) 1-13
Array Editor 3-13
array operators 4-22
arrays 4-18, 4-21

cell 6-9
character 6-11
columnwise organization 4-23
concatenating 4-16
creating in M-files 4-15
deleting rows and columns 4-16
deleting rows or columns 4-16
elements 4-10
generating with functions and operators 4-14
listing contents 4-10
loading from external data files 4-15
multidimensional 6-7
notation for elements 4-10
preallocating 6-23
structure 6-14
variable names 4-10

aspect ratio of axes 5-11
axes 5-10

axis
labels 5-12
titles 5-12

axis 5-10

B
backslash operator 7-65
Bessel functions

differentiating 7-17
integrating 7-24

besselj 7-17
besselk 7-93
bit map 5-25
bitwise functions A-17
blockset 1-14
bookmarking documentation 3-10
books

MATLAB-related 1-10
branch cut 7-42
break 6-6

C
calculus 7-16–7-42
case 6-4
cell array functions A-19
cell arrays 6-9
char 6-13
character arrays 6-11
character string functions A-16
characteristic polynomial 4-21, 7-69, 7-71
circulant matrix 7-10, 7-53
clear 7-26
clearing variables

in the Maple workspace 7-27

Index

I-2

in the MATLAB workspace 7-27
collect 7-44
colon operator 4-7
colormap 5-20
colors

lines for plotting 5-4
colspace 7-66
column space 7-66
Command History 3-7
command line editing 4-30
Command Window 3-6
commands

general purpose A-3–A-4
comp.soft-sys.matlab 1-10
complex numbers, plotting 5-6
complex symbolic variables 7-9
concatenating

arrays 4-16
strings 6-13

concatenation 4-16
configuring additional products

on Linux 2-13
on PC 2-5

configuring the desktop 3-5
conj 7-9
constants

special 4-12
contents in Help browser 3-10
continue 6-5
continuing statements on multiple lines 4-30
converting symbolic matrices to numeric form

7-8
coordinate system conversion A-10
current directory 3-11
Current Directory browser 3-11

D
data analysis and Fourier transform functions

A-11–A-12
data visualization A-19–A-24
debugging commands A-6–A-7
debugging M-files 3-14
decimal symbolic expressions 7-8
default symbolic variable 7-11
definite integration 7-23
deleting array elements 4-16
demonstration programs 6-27
demos

MATLAB 1-6
demos 6-27
demos, running from the Launch Pad 3-8
desktop for MATLAB 3-4
desktop tools 3-6
determinant of matrix 4-19
development environment 3-2
diag 4-5
diff 7-16
differentiation 7-16–7-19
digits 7-8
discontinuities 7-41
display pane in Help browser 3-10
documentation 3-8
documentation path

setting on Linux 2-12
double 7-61
dsolve 7-90

E
editing command lines 4-30
editing plots

interactively 5-15
Editor/Debugger 3-14

Index

I-3

eig 7-68
eigenvalue 4-20
eigenvalue trajectories 7-78–7-85
eigenvalues 7-68–7-74, 7-79

computing 7-68
eigenvector 4-20, 7-69
elementary math functions A-8–A-9
elementary matrices and matrix manipulation

A-7–A-8
elements of arrays 4-10
entering matrices 4-3
environment 3-2
eps 7-8
erase mode 5-37
eval 6-22
executing MATLAB 3-3
exiting MATLAB 3-3
expand 7-44
exporting data 3-15
expressions 4-10, 4-13

evaluating 6-22
external programs, running from MATLAB 3-7
ezplot 7-30

F
factor 7-45
favorites in Help browser 3-10
figure 5-9
figure windows 5-9

with multiple plots 5-9
file I/O functions A-17
find 4-26
finding in a page 3-10
finding object handles 5-33
findsym 7-13
fliplr 4-5

floating-point arithmetic 7-58
floating-point numbers 4-11
floating-point symbolic expressions 7-7
flow control 6-2
for 6-4
format

of output display 4-28
format 4-28, 7-58
function 6-19
function functions 6-24

nonlinear numerical methods A-13
function handles

defined 6-24
using 6-25

function M-file 6-17, 6-18
function of two variables 5-18
functions 4-11, 6-18

bitwise A-17
built-in 4-12
cell array A-19
character string A-16
coordinate system conversion A-10
data analysis and Fourier transform A-11–

A-12
data visualization A-19–A-24
elementary math A-8–A-9
elementary matrices and matrix manipulation

A-7–A-8
file I/O A-17
finding specific 1-7
function functions - nonlinear numerical

methods A-13
general purpose commands A-3–A-4
graphical user interface control A-24–A-25
Java interface A-18
language constructs and debugging A-5–A-7
logical A-5

Index

I-4

matrix functions - numerical linear algebra
A-10–A-11

multidimensional array A-19
object A-18
operators and special characters A-5
polynomial and interpolation A-12–A-13
serial port I/O A-25–A-26
sound processing A-15
sparse matrix A-14–A-15
specialized math A-9
specialized matrices A-8
structure A-18
variable number of arguments 6-19

G
Givens transformation 7-63, 7-72
global variables 6-20
golden ratio 7-6
graphical user interface 5-35
graphical user interface control A-24–A-25
graphics

2-D 5-2
files 5-26
handle graphics 5-28
objects 5-28
printing 5-26

grids 5-12
guide 5-35

H
Handle Graphics 1-13, 5-28

finding handles 5-33
properties 5-31

Help
accessing 1-8

accessing on Linux 2-14
accessing on PC 2-6

help
sources of 1-8
via MathWorks Knowledge Base 1-10
via MathWorks Web site 1-10
via newsgroup 1-10

Help browser 3-8
help functions 3-10
Help Navigator 3-10
hierarchy of graphics objects 5-29
Hilbert matrix 7-8, 7-64
hold 5-7
horner 7-45

I
IEEE floating-point arithmetic 7-59
if 6-2
images 5-24
imaginary number 4-10
Import Wizard 3-15
importing data 3-15
index in Help browser 3-10
installation procedure

selecting products on Linux 2-11
installation root directory

specifying 2-10
installing MATLAB

on Linux 2-8
on PC 2-4

installing toolboxes
on Linux 2-13
on PC 2-5

int 7-22
integration 7-22–7-27

definite 7-23

Index

I-5

with real constants 7-24

J
jacobian 7-18
Jacobian matrix 7-18
Java interface functions A-18
jordan 7-74
Jordan canonical form 7-74–7-75

L
language constructs A-5–A-6
Launch Pad 3-8
learning MATLAB 1-6
legend 5-3
legend, adding to plot 5-3
library

mathematical function 1-13
license agreement 2-10
lighting 5-21
limit 7-20
limits 7-20–7-21

two-sided 7-20
undefined 7-21

limits, axes 5-11
line continuation 4-30
line styles of plots 5-4
linear algebra 7-63–7-85
Linux

setting online documentation path 2-12
load 4-15
loading arrays 4-15
local variables 6-19
log of functions used 3-7
logical functions A-5
logical vectors 4-25

M
machine epsilon 7-8
Maclaurin series 7-28
magic 4-8
magic square 4-4
Maple 7-2
markers 5-5
MAT-file 5-24
mathematical function library 1-13
mathematical functions

listing advanced 4-12
listing elementary 4-11
listing matrix 4-12

MathWorks Knowledge Base 1-10
MathWorks Store

purchasing products from 1-10
MathWorks Web site 1-10
MATLAB

Application Program Interface 1-13
books 1-10
calling C subroutine 2-3, 2-8
calling Fortran subroutine 2-3, 2-8
demos 1-6
history 1-12
how to learn 1-6
installing on Linux 2-8
installing on PC 2-4
language 1-13
mathematical function library 1-13
overview 1-12
starting on Linux 2-13
supported Linux compilers 2-8
supported PC compilers 2-3

matlab command
setting up symbolic link 2-12

matrices 4-18
creating 4-14

Index

I-6

entering 4-3
matrix 4-2

antidiagonal 4-5
determinant 4-19
main diagonal 4-5
singular 4-19
swapping columns 4-8
symmetric 4-18
transpose 4-4

matrix condition number 7-66
matrix functions - numerical linear algebra A-10–

A-11
matrix multiplication 4-18
mesh plot 5-18
mex command

setting up symbolic link 2-12
MEX-file 2-3, 2-8

supported PC compilers 2-3
M-file 1-12, 4-15, 6-17

creating 6-17, 7-15
for creating arrays 4-15
function 6-17, 6-18
script 6-17

M-file performance 3-15
M-files 3-14
Microsoft Word and access to MATLAB 3-15
movies 5-38
multidimensional array functions A-19
multidimensional arrays 6-7
multiple data sets, plotting 5-3
multiple plots per figure 5-9
multivariate data, organizing 4-23

N
newsgroup 1-10
newsgroup for MATLAB users 3-11

Notebook 3-15
null 7-66
null space 7-66
numbers 4-10

floating-point 4-11
numeric symbolic expressions 7-7

O
object functions A-18
object properties 5-31
objects

finding handles 5-33
graphics 5-28

online documentation
specifying viewing options on Linux 2-12

online help, viewing 3-8
operator 4-11, A-5

colon 4-7
output

controlling format 4-28
suppressing 4-30

overlaying plots 5-7

P
path 3-12
performance of M-files 3-15
plot 5-2
plot editing mode

overview 5-15
plots

editing 5-14
plotting

adding legend 5-3
adding plots 5-7
annotating 5-14

Index

I-7

basic 5-2
complex data 5-6
complex numbers 5-6
contours 5-8
line colors 5-4
line styles 5-4
lines and markers 5-5
mesh and surface 5-18
multiple data sets 5-3
multiple plots 5-9

poly 7-69
polynomial and interpolation functions A-12–

A-13
PostScript 5-26
preallocation 6-23
preferences 3-5
pretty 7-28
print 5-26
printing

graphics 5-26
product

registration 1-11
professional version

differences with Student Version 1-3
profiler 3-15
Property Editor

interface 5-16

Q
quitting MATLAB 3-3

R
rational arithmetic 7-59
rational symbolic expressions 7-7
ReadMe file 2-5

real property 7-9
real symbolic variables 7-9, 7-26
reference information, obtaining 1-7
registering your software 1-11
revision control systems, interfacing to MATLAB

3-15
root directory

specifying 2-10
Rosser matrix 7-70, 7-71
running functions 3-6
running MATLAB 3-3

S
scalar expansion 4-24
scientific notation 4-10
screens

installation data 2-12
root directory 2-10

script M-file 6-17
scripts 6-17
search path 3-12
searching documentation 3-10
selecting products to be installed on Linux 2-11
semicolon to suppress output 4-30
serial port I/O functions A-25–A-26
shutting down MATLAB 3-3
simple 7-48
simplifications 7-43–7-50
simplify 7-47
Simulink 1-14
simultaneous differential equations

solving 7-92
simultaneous linear equations

solving systems of 7-65, 7-89
singular matrix 4-19
singular value decomposition 7-76–7-78

Index

I-8

solve 7-86
solving equations 7-86–7-93

algebraic 7-86–7-90
ordinary differential 7-90–7-93

sound processing functions A-15
source control systems, interfacing to MATLAB

3-15
sparse matrix functions A-14–A-15
special characters A-5
special constants 4-12

infinity 4-12
not-a-number 4-12

specialized graphs 5-8
specialized math functions A-9
specialized matrices A-8
specifying viewing options on Linux 2-12
spherical coordinates 7-18
starting MATLAB 3-3
startup.m file 2-5, 2-13
Stateflow 1-14
statements

continuing on multiple lines 4-30
executing 6-22

strings
concatenating 6-13

structure functions A-18
structures 6-14
Student Version

differences with professional version 1-3
MATLAB differences 1-3
Simulink differences 1-4
Symbolic Math Toolbox differences 1-4

subexpr 7-51
subexpressions 7-51–7-53
subplot 5-9
subs 7-53
subscripting

with logical vectors 4-25
subscripts 4-6
substitutions 7-51–7-57
sum 4-4
summation

symbolic 7-27
support

sources of 1-8
suppressing output 4-30
surface plot 5-18
svd 7-76
switch 6-4
sym 7-5, 7-6, 7-7, 7-8, 7-26
symbolic expressions 7-86

creating 7-6
decimal 7-8
floating-point 7-7
numeric 7-7
rational 7-7

symbolic links
setting up 2-12

symbolic math functions
creating 7-14

Symbolic Math Toolbox
demo 7-5
learning 1-7

Symbolic Math Toolbox functions
arithmetic operations B-3
basic operations B-3
calculus B-3
conversions B-3
integral transforms B-3
linear algebra B-3
pedagogical and graphical applications B-4
simplification B-4
solution of equations B-4
special functions B-4

Index

I-9

variable precision arithmetic B-4
symbolic matrix

computing eigenvalue of 7-71
converting to numeric form 7-8
creating 7-10
differentiating 7-17

symbolic objects
about 7-5

symbolic summation 7-27
symbolic variables

complex 7-9
creating 7-6
default 7-11
real 7-9, 7-26

symmetric matrix 4-18
syms 7-7
symsum 7-27
system requirements

Linux 2-7
PC 2-2

T
taylor 7-28
Taylor series 7-28
technical support 1-11
text 6-11
TIFF 5-27
title

figure 5-12
toolbox 1-12
toolboxes

installing on Linux 2-13
installing on PC 2-5

tools in the desktop 3-6
transpose 4-4
troubleshooting 1-8

U
unreal property 7-9
user interface 5-35

building 5-35

V
variable-precision arithmetic 7-58–7-62
variable-precision numbers 7-60
variables 4-10

global 6-20
local 6-19

vector 4-2
logical 4-25
preallocating 6-23

vectorization 6-23
version control systems, interfacing to MATLAB

3-15
viewing documentation 3-10
visibility of axes 5-11
vpa 7-60

W
Web site 1-10
while 6-5
windows for plotting 5-9
windows in MATLAB 3-4
wireframe 5-18

surface 5-18
Word and access to MATLAB 3-15
word processing access to MATLAB 3-15
workspace 3-12
Workspace browser 3-12
www.mathworks.com 1-10
www.mathworks.com/education 1-10
www.mathworks.com/store 1-10, 2-5, 2-13

Index

I-10

www.mathworks.com/support 1-8, 1-11
www.mathworks.com/support/books 1-10

X
xor erase mode 5-37

	Introduction
	About the Student Version
	Student Use Policy
	Differences Between the Student Version and the Professional Version
	MATLAB
	MATLAB Differences

	Simulink
	Simulink Differences

	Symbolic Math Toolbox

	Obtaining Additional MathWorks Products
	Getting Started with MATLAB
	Finding Reference Information
	Troubleshooting and Other Resources
	Documentation Library
	Accessing the Online Documentation

	MathWorks Web Site
	MathWorks Education Web Site
	MATLAB Related Books
	MathWorks Store
	Usenet Newsgroup
	MathWorks Knowledge Base
	Technical Support
	Product Registration

	About MATLAB and Simulink
	What Is MATLAB?
	Toolboxes
	The MATLAB System
	Development Environment
	The MATLAB Mathematical Function Library
	The MATLAB language
	Handle Graphics®
	The MATLAB Application Program Interface (API)

	What Is Simulink?
	What Is Stateflow?

	Installation
	Installing on Windows
	System Requirements
	MATLAB and Simulink
	MEX-Files

	Installing MATLAB
	Installing Additional Toolboxes
	Accessing the Online Documentation (Help)

	Installing on Linux
	System Requirements
	MATLAB and Simulink
	MEX-Files

	Installing MATLAB
	Installing the Software

	Post Installation Procedures
	Successful Installation
	Unsuccessful Installation

	Installing Additional Toolboxes
	Accessing the Online Documentation (Help)

	Development Environment
	Introduction
	Starting and Quitting MATLAB
	Starting MATLAB
	Quitting MATLAB

	MATLAB Desktop
	Desktop Tools
	Command Window
	Command History
	Running External Programs

	Launch Pad
	Help Browser
	Help Navigator
	Display Pane
	For More Help

	Current Directory Browser
	Search Path

	Workspace Browser
	Array Editor

	Editor/Debugger

	Other Development Environment Features

	Getting Started
	Matrices and Magic Squares
	Entering Matrices
	sum, transpose, and diag
	Subscripts
	The Colon Operator
	The magic Function

	Expressions
	Variables
	Numbers
	Operators
	Functions
	Examples of Expressions

	Working with Matrices
	Generating Matrices
	The load Command
	M-Files
	Concatenation
	Deleting Rows and Columns

	More About Matrices and Arrays
	Linear Algebra
	Arrays
	Building Tables

	Multivariate Data
	Scalar Expansion
	Logical Subscripting
	The find Function

	Controlling Command Window Input and Output
	The format Command
	Suppressing Output
	Entering Long Command Lines
	Command Line Editing
	Tab Completion

	Graphics
	Basic Plotting
	Creating a Plot
	Multiple Data Sets in One Graph
	Specifying Line Styles and Colors
	Plotting Lines and Markers
	Imaginary and Complex Data
	Adding Plots to an Existing Graph
	Figure Windows
	Clearing the Figure for a New Plot

	Multiple Plots in One Figure
	Controlling the Axes
	Setting Axis Limits
	Setting Axis Aspect Ratio
	Setting Axis Visibility
	Setting Grid Lines

	Axis Labels and Titles
	Saving a Figure
	Formats for Importing into Other Applications

	Editing Plots
	Interactive Plot Editing
	Using Functions to Edit Graphs
	Using Plot Editing Mode
	Using the Property Editor
	Starting the Property Editor

	Mesh and Surface Plots
	Visualizing Functions of Two Variables
	Example – Graphing the sinc Function
	Example – Colored Surface Plots
	Transparent Surfaces
	Surface Plots with Lighting
	Manipulating the Surface

	Images
	Printing Graphics
	Printing from the Menu
	Exporting Figure to Graphics Files
	Using the Print Command

	Handle Graphics
	Graphics Objects
	Object Hierarchy
	Creating Objects
	Commands for Working with Objects

	Setting Object Properties
	Setting Properties from Plotting Commands
	Setting Properties of Existing Objects
	Setting Multiple Property Values

	Finding the Handles of Existing Objects
	Finding All Objects of a Certain Type
	Finding Objects with a Particular Property
	Limiting the Scope of the Search
	Using findobj as an Argument

	Graphics User Interfaces
	Graphical User Interface Design Tools

	Animations
	Erase Mode Method
	Creating Movies

	Programming with MATLAB
	Flow Control
	if
	switch and case
	for
	while
	continue
	break

	Other Data Structures
	Multidimensional Arrays
	Cell Arrays
	Characters and Text
	Structures

	Scripts and Functions
	Scripts
	Functions
	Global Variables
	Passing String Arguments to Functions
	Constructing String Arguments in Code
	A Cautionary Note

	The eval Function
	Vectorization
	Preallocation
	Function Handles
	Function Functions

	Demonstration Programs Included with MATLAB
	Getting More Information

	Symbolic Math Toolbox
	Introduction
	Getting Help
	Getting Started
	Symbolic Objects
	Creating Symbolic Variables and Expressions
	Symbolic and Numeric Conversions
	Constructing Real and Complex Variables
	Creating Abstract Functions
	Example: Creating a Symbolic Matrix
	The Default Symbolic Variable

	Creating Symbolic Math Functions
	Using Symbolic Expressions
	Creating an M-File

	Calculus
	Differentiation
	Limits
	Integration
	Integration with Real Constants
	Real Variables via sym

	Symbolic Summation
	Taylor Series
	Extended Calculus Example

	Simplifications and Substitutions
	Simplifications
	collect
	expand
	horner
	factor
	simplify
	simple

	Substitutions
	subexpr
	subs

	Variable-Precision Arithmetic
	Overview
	Example: Using the Different Kinds of Arithmetic
	Rational Arithmetic
	Variable-Precision Numbers
	Converting to Floating-Point

	Another Example

	Linear Algebra
	Basic Algebraic Operations
	Linear Algebraic Operations
	Eigenvalues
	Jordan Canonical Form
	Singular Value Decomposition
	Eigenvalue Trajectories

	Solving Equations
	Solving Algebraic Equations
	Several Algebraic Equations
	Single Differential Equation
	Example 1
	Example 2
	Example 3

	Several Differential Equations

	MATLAB Quick Reference
	Introduction
	General Purpose Commands
	Operators and Special Characters
	Logical Functions
	Language Constructs and Debugging
	Elementary Matrices and Matrix Manipulation
	Specialized Matrices
	Elementary Math Functions
	Specialized Math Functions
	Coordinate System Conversion
	Matrix Functions - Numerical Linear Algebra
	Data Analysis and Fourier Transform Functions
	Polynomial and Interpolation Functions
	Function Functions - Nonlinear Numerical Methods
	Sparse Matrix Functions
	Sound Processing Functions
	Character String Functions
	File I/O Functions
	Bitwise Functions
	Structure Functions
	MATLAB Object Functions
	MATLAB Interface to Java Functions
	Cell Array Functions
	Multidimensional Array Functions
	Data Visualization
	Graphical User Interfaces
	Serial Port I/O

	Symbolic Math Toolbox Quick Reference
	Introduction
	Arithmetic Operations �
	Basic Operations �
	Calculus �
	Conversions �
	Integral Transforms�
	Linear Algebra
	Pedagogical and Graphical Applications�
	Simplification�
	Solution of Equations�
	Special Functions�
	Variable Precision Arithmetic

	Index

