MATLAB
 STUDENT VERSION

Computation

Visualization

Programming

The

How to Contact The MathW orks:


```
www. mathworks.com
ftp. mathworks.com
comp. soft-sys.matlab
```


Web
 Anonymous FTP server Newsgroup

suggest @mathworks.com
bugs @mathworks.com
doc@mathworks.com

Product enhancement suggestions
Bug reports
Documentation error reports

ISBN 0-9672195-3-1

Learning MATLAB

© COPYRIGHT 1999-2001 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by or for the federal government of the United States. By accepting delivery of the Program, the government hereby agrees that this software qualifies as "commercial" computer software within the meaning of FAR Part 12.212, DFARS Part 227.7202-1, DFARS Part 227.7202-3, DFARS Part 252.227-7013, and DFARS Part 252.227-7014. Theterms and conditions of The MathWorks, Inc. Software License Agreement shall pertain to the government's use and discl osure of the Program and Documentation, and shall supersede any conflicting contractual terms or conditions. If this license fails to meet the government's minimum needs or is inconsistent in any respect with federal procurement law, the government agrees to return the Program and Documentation, unused, to MathWorks.
MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and Target Language Compiler is a trademark of The MathWorks, Inc.
Other product or brand names are trademarks or registered trademarks of their respective holders.
Printing History: August 1999 First printing New manual
J anuary 2001 Second printing Revised for MATLAB 6.0 (Release 12)

Introduction

1

About the Student Version 1-2
Student Use Policy 1-2
Differences Between the Student Version and the Professional Version 1-3
Obtaining Additional MathWorks Products 1-5
Getting Started with MATLAB 1-6
Finding Reference Information 1-7
Troubleshooting and Other Resources 1-8
Documentation Library 1-8
MathWorks Web Site 1-10
MathWorks Education Web Site 1-10
MATLAB Related Books 1-10
MathWorks Store 1-10
Usenet Newsgroup 1-10
MathWorks K nowledge Base 1-10
Technical Support 1-11
Product Registration 1-11
About MATLAB and Simulink 1-12
What Is MATLAB? 1-12
What Is Simulink? 1-14
Installing on Windows 2-2
System Requirements 2-2
Installing MATLAB 2-4
Installing Additional Tool boxes 2-5
Accessing the Online Documentation (Help) 2-6
Installing on Linux 2-7
System Requirements 2-7
Installing MATLAB 2-8
Post Installation Procedures 2-13
Installing Additional Toolboxes 2-13
Accessing the Online Documentation (Help) 2-14
Development Environment
3
Introduction 3-2
Starting and Quitting MATLAB 3-3
Starting MATLAB 3-3
Quitting MATLAB 3-3
MATLAB Desktop 3-4
Desktop Tools 3-6
Command Window 3-6
Launch Pad 3-8
Help Browser 3-8
Current Directory Browser 3-11
Workspace Browser 3-12
Editor/Debugger 3-14
Other Development Environment Features 3-15

Getting Started

Matrices and Magic Squares 4-2
Entering Matrices 4-3
sum, transpose, and diag 4-4
Subscripts 4-6
The Colon Operator 4-7
The magic Function 4-8
Expressions 4-10
Variables 4-10
Numbers 4-10
Operators 4-11
Functions 4-11
Examples of Expressions 4-13
Working with Matrices 4-14
Generating Matrices 4-14
The load Command 4-15
M-Files 4-15
Concatenation 4-16
Deleting Rows and Columns 4-16
More About Matrices and Arrays 4-18
Linear Algebra 4-18
Arrays 4-21
Multivariate Data 4-23
Scalar Expansion 4-24
Logical Subscripting 4-25
The find Function 4-26
Controlling Command Window Input and Output 4-28
The format Command 4-28
Suppressing Output 4-30
Entering Long Command Lines 4-30
Command Line Editing 4-30

Graphics

5

Basic Plotting 5-2
Creating a Plot 5-2
Multiple Data Sets in One Graph 5-3
Specifying Line Styles and Colors 5-4
Plotting Lines and Markers 5-5
Imaginary and Complex Data 5-6
Adding Plots to an Existing Graph 5-7
Figure Windows 5-9
Multiple Plots in One Figure 5-9
Controlling the Axes 5-10
Axis Labels and Titles 5-12
Saving a Figure 5-13
Editing Plots 5-14
Interactive Plot Editing 5-14
Using Functions to Edit Graphs 5-14
Using Plot Editing Mode 5-15
Using the Property Editor 5-16
Mesh and Surface Plots 5-18
Visualizing F unctions of Two Variables 5-18
Images 5-24
Printing Graphics 5-26
Handle Graphics 5-28
Graphics Objects 5-28
Setting Object Properties 5-31
Finding the Handles of Existing Objects 5-33
Graphics User Interfaces 5-35
Graphical User Interface Design Tools 5-35
Animations 5-37
Erase Mode Method 5-37
Creating Movies 5-38

Programming with MATLAB

6

Flow Control 6-2
if 6-2
switch and case 6-4
for 6-4
while 6-5
continue 6-5
break 6-6
Other Data Structures 6-7
Multidimensional Arrays 6-7
Cell Arrays 6-9
Characters and Text 6-11
Structures 6-14
Scripts and Functions 6-17
Scripts 6-17
Functions 6-18
Global Variables 6-20
Passing String Arguments to Functions 6-20
The eval Function 6-22
Vectorization 6-23
Preallocation 6-23
Function Handles 6-24
Function Functions 6-24
Demonstration Programs Included with MATLAB 6-27
Symbolic Math Toolbox
7
Introduction 7-2
Getting Help 7-4
Getting Started 7-5
Symbolic Objects 7-5
Creating Symbolic Variables and Expressions 7-6
Symbolic and Numeric Conversions 7-7
Creating Symbolic Math Functions 7-14
Calculus 7-16
Differentiation 7-16
Limits 7-20
Integration 7-22
Symbolic Summation 7-27
Taylor Series 7-28
Extended Calculus Example 7-29
Simplifications and Substitutions 7-43
Simplifications 7-43
Substitutions 7-51
Variable-Precision Arithmetic 7-58
Overview 7-58
Example: Using the Different Kinds of Arithmetic 7-59
Another Example 7-61
Linear Algebra 7-63
Basic Algebraic Operations 7-63
Linear Algebraic Operations 7-64
Eigenvalues 7-68
J ordan Canonical F orm 7-74
Singular Value Decomposition 7-76
Eigenvalue Trajectories 7-78
Solving Equations 7-86
Solving Algebraic Equations 7-86
Several Algebraic Equations 7-87
Single Differential Equation 7-90
Several Differential Equations 7-92

Symbolic Math Toolbox Quick Reference

B

Introduction

About the Student Version 1-2
Obtaining Additional MathWorks Products 1-5
Getting Started with MATLAB 1-6
Finding Reference Information 1-7
Troubleshooting and Other Resources 1-8
About MATLAB and Simulink 1-12

About the Student Version

MATLAB ${ }^{\circledR}$ \& Simulink ${ }^{\circledR}$ are the premier software packages for technical computation, data analysis, and visualization in education and industry. The Student Version of MATLAB \& Simulink provides all of the features of professional MATLAB, with no limitations, and the full functionality of professional Simulink, with model sizes up to 300 blocks. The Student Version gives you immediate access to the high-performance numeric computing power you need.

MATLAB allows you to focus on your course work and applications rather than on programming details. It enables you to solve many numerical problems in a fraction of the time it would take you to write a program in a lower level language. MATLAB helps you better understand and apply concepts in applications ranging from engineering and mathematics to chemistry, biology, and economics.

Simulink, included with the Student Version, provides a block diagram tool for modeling and simulating dynamical systems, including signal processing, controls, communications, and other complex systems.
The Symbolic Math Tool box, also included with the Student Version, is based on the Maple ${ }^{\circledR} V$ symbolic kernel and lets you perform symbolic computations and variable-precision arithmetic.

MATLAB products are used in a broad range of industries, including automotive, aerospace, electronics, environmental, telecommunications, computer peripherals, finance, and medical. More than 400,000 technical professionals at the world's most innovative technology companies, government research labs, financial institutions, and at more than 2,000 universities rely on MATLAB and Simulink as the fundamental tools for their engineering and scientific work.

Student Use Policy

This Student License is for use in conjunction with courses offered at a degree-granting institution. The MathWorks offers this license as a special service to the student community and asks your help in seeing that its terms are not abused.

To use this Student License, you must be a student using the software in conjunction with courses offered at degree-granting institutions.

Y ou may not use this Student License at a company or government lab. Also, you may not use it for research or for commercial or industrial purposes. In these cases, you can acquire the appropriate professional or academic version of the software by contacting The MathWorks.

Differences Betw een the Student Version and the Professional Version

MATLAB

This version of MATLAB provides full support for all language features as well as graphics, external interface and Application Program Interface support, and access to every other feature of the professional version of MATLAB.

Note MATLAB does not have a matrix size limitation in this Student Version.
matLab Differences. There are a few small differences between the Student Version and the professional version of MATLAB:

- The MATLAB prompt in the Student Version is EDU>>
- The window title bars include the words
<Student Version>
- All printouts contain the footer

Student Version of MATLAB
This footer is not an option that can be turned off; it will always appear in your printouts.

Simulink

This Student Version contains the complete Simulink product, which is used with MATLAB to model, simulate, and analyze dynamical systems.

Simulink Differences.

- Models are limited to 300 blocks.
- The window title bars include the words
<Student Version>
- All printouts contain the footer

Student Version of MATLAB
This footer is not an option that can be turned off; it will always appear in your printouts.

Note Using Simulink, which is accessible from the Help browser, contains all of the Simulink related information in the Learning Simulink book plus additional, advanced information.

Symbolic Math Toolbox

The Symbolic Math Tool box included with this Student Version lets you use an important subset of Maple. Y ou can access all of the functions in the professional version of the Symbolic Math Toolbox except maple, mapl einit, mf un , mf unlist, andmhelp. For a completelist of all the availablefunctions, see Appendix B, "Symbolic Math Tool box Quick Reference."

Obtaining Additional MathWorks Products

Many college courses recommend MATLAB as their standard instructional software. In some cases, the courses may require particular tool boxes, blocksets, or other products. Many of these products are available for student use. Y ou may purchase and download these additional products at special student prices from the MathWorks Store at www. mathworks. com/store.

Although many professional tool boxes areavailable at student prices from the MathWorks Store, not every one is available for student use. Some of the tool boxes you can purchase include:

- Communications
- Control System
- Fuzzy Logic
- Image Processing
- Neural Network
- Optimization
- Signal Processing
- Statistics
- Stateflow ${ }^{\circledR}$ (A demo version of Stateflow is included with your Student Version.)

For an up-to-date list of which tool boxes are available, visit the MathWorks Store.

Note The tool boxes that are available for the Student Version of MATLAB \& Simulink have the same functionality as the full, professional versions. However, these student versions will only work with the Student Version. Likewise, the professional versions of the tool boxes will not work with the Student Version.

Getting Started with MATLAB

What I Want	What I Should Do
I need to install MATLAB.	See Chapter 2, "I nstallation," in this book.
I want to start MATLAB.	(PC) Your MathWorks documentation CD must be in your CD-ROM drive to start MATLAB. Doubleclick the MATLAB icon on your desktop.
	(Linux) Enter the mat I ab command.

Finding Reference Information

What I Want	What I Should Do
I want to know how to use a specific function.	Use the online help facility (Help). To access Help, use the command he I p brows er or use the Help menu. The MATLAB Function Reference is also available from Help in PDF format (under Printable Documentation) if you want to print out any of the function descriptions in high-quality form. Note: Your MathWorks documentation CD must be in your CD-ROM drive to access Help.
I want to find a function for a specific purpose but I don't know its name.	There are several choices: - See "MATLAB Quick Reference" in this book for a list of MATLAB functions.
	- From Help, peruse the MATLAB functions by Category or Alphabetically.
- Use I ookf or (e.g., I o okf or inver se) from the command line.	
- Use Index or Search from Help.	

Troubleshooting and Other Resources

What I Want	What I Should Do
I have a MATLAB specific problem I want help with.	Visit the Technical Support section (www. mathworks.com/support) of the MathWorks Web site and search the Knowledge Base of problem solutions.
I want to report a bug or make a suggestion.	Use Help or send e-mail tobugs @mathworks.com or suggest @mathworks.com.

Documentation Library

Your Student Version of MATLAB \& Simulink contains much more documentation than the two printed books, Learning MATLAB and Learning Simulink. On your CD is a personal reference library of every book and reference page distributed by The MathWorks. Access this documentation library from Help.

Note Even though you have the documentation set for the MathWorks family of products, not every product is available for the Student Version of MATLAB \& Simulink. For an up-to-date list of available products, visit the MathWorks Store. At the store you can also purchase printed manuals for the MATLAB family of products.

Accessing the \mathbf{O} nline Documentation

Access the online documentation (Help) directly from your product CD. (Linux users should refer to Chapter 2, "Installation," for specific information on configuring and accessing the online Help from the CD.)

1 Place the CD in your CD-ROM drive.
2 Select Full Product Family Help from the Help menu.

Help appears in a separate window.

Note When you start MATLAB for the first time, the Help Navigator displays entries for additional products. To learn how to change the displayed product list, see the "Product Filter" on page 3-10.

MathWorks Web Site

Use your browser to visit the MathWorks Web site, www. mat hworks. com. You'll find lots of information about MathWorks products and how they are used in education and industry, product demos, and MATLAB based books. From the Web site you will also be able to access our technical support resources, view a library of user and company supplied M-files, and get information about products and upcoming events.

MathWorks Education Web Site

This education-specific Web site, www. mathworks. com/ education, contains many resources for various branches of engineering, mathematics, and science. Many of these include teaching examples, books, and other related products. Y ou will also find a comprehensive list of links to Web sites where MATLAB is used for teaching and research at universities.

MATLAB Related Books

Hundreds of MATLAB related books are available from many different publishers. An up-to-date list is available at www. mathworks.com/support/ books.

MathWorks Store

The MathWorks Store (www. mathworks.com/st ore) gives you an easy way to purchase add-on products and documentation.

Usenet Newsgroup

If you have access to Usenet newsgroups, you can join the active community of participants in the MATLAB specific group, comp. soft-sys. matlab. This forum is a gathering of professionals and students who use MATLAB and have questions or comments about it and its associated products. This is a great resource for posing questions and answering those of others. MathWorks staff also participates actively in this newsgroup.

MathWorks Know ledge Base

Y ou can access the MathWorks Knowledge Base from the Support link on our Web site. Our Technical Support group maintains this database of frequently asked questions (FAQ). You can peruse the K nowledge Base to quickly locate
relevant data. You will find numerous examples on graphics, mathematics, API, Simulink, and others. Y ou can answer many of your questions by spending a few minutes with this around-the-clock resource.

Technical Support

The MathWorks does not provide telephone technical support to users of the Student Version of MATLAB \& Simulink. There are numerous other vehicles of technical support that you can use. The Additional Sources of Information section in the CD holder identifies the ways to obtain support.

Registered users of the Student Version of MATLAB \& Simulink can use our electronic technical support services to answer product questions. Visit our Technical Support Web site at www. mathworks. com/support.

After checking the available MathWorks sources for help, if you still cannot resolve your problem, you should contact your instructor. Your instructor should be able to help you, but if not, there is telephone technical support for registered instructors who have adopted the Student Version of MATLAB \& Simulink in their courses.

Product Registration

Visit the MathWorks Web site (www. mathworks. com/student) and register your Student Version.

About MATLAB and Simulink

What Is MATLAB?

MATLAB is a high-performance language for technical computing. It integrates computation, visualization, and programming in an easy-to-use environment where problems and solutions are expressed in familiar mathematical notation. Typical uses include:

- Math and computation
- Algorithm development
- Modeling, simulation, and prototyping
- Data analysis, exploration, and visualization
- Scientific and engineering graphics
- Application development, including graphical user interface building

MATLAB is an interactive system whose basic data element is an array that does not require dimensioning. This allows you to solve many technical computing problems, especially those with matrix and vector formulations, in a fraction of thetime it would take to write a program in a scalar noninteractive language such as C or Fortran.

The name MATLAB stands for matrix laboratory. MATLAB was originally written to provide easy access to matrix software developed by the LINPACK and EISPACK projects. Today, MATLAB uses software developed by the LAPACK and ARPACK projects, which together represent the state-of-the-art in software for matrix computation.
MATLAB has evolved over a period of years with input from many users. In university environments, it is the standard instructional tool for introductory and advanced courses in mathematics, engineering, and science. In industry, MATLAB is thetool of choice for high-productivity research, development, and analysis.

Toolboxes

MATLAB features a family of application-specific solutions called tool boxes. Very important to most users of MATLAB, toolboxes allow you to learn and apply specialized technology. Tool boxes are comprehensive collections of MATLAB functions (M-files) that extend the MATLAB environment to solve
particular classes of problems. Areas in which toolboxes are available include signal processing, control systems, neural networks, fuzzy logic, wavelets, simulation, and many others.

The MATLAB System

The MATLAB system consists of five main parts:
Development Environment. This is the set of tools and facilities that help you use MATLAB functions and files. Many of these tools are graphical user interfaces. It includes the MATLAB desktop and Command Window, a command history, and browsers for viewing help, the workspace, files, and the search path.

The MATLAB Mathematical Function Library. This is a vast collection of computational al gorithms ranging from elementary functions like sum, sine, cosine, and complex arithmetic, to more sophisticated functions like matrix inverse, matrix eigenvalues, Bessel functions, and fast Fourier transforms.

The MATLAB language. This is a high-level matrix/array language with control flow statements, functions, data structures, input/output, and object-oriented programming features. It allows both "programming in the small" to rapidly create quick and dirty throw-away programs, and "programming in the large" to create complete large and complex application programs.

Handle Graphics ${ }^{\circledR}$. This is the MATLAB graphics system. It includes high-level commands for two-dimensional and three-dimensional data visualization, image processing, animation, and presentation graphics. It also includes low-level commands that allow you to fully customize the appearance of graphics as well as to build complete graphical user interfaces on your MATLAB applications.

The MATLAB Application Program Interface (API). This is a library that allows you to write C and F ortran programs that interact with MATLAB. It includefacilities for calling routines from MATLAB (dynamic linking), calling MATLAB as a computational engine, and for reading and writing MAT-files.

What Is Simulink?

Simulink, a companion program to MATLAB, is an interactive system for simulating nonlinear dynamic systems. It is a graphical mouse-driven program that allows you to model a system by drawing a block diagram on the screen and manipulating it dynamically. It can work with linear, nonlinear, continuous-time, discrete-time, multirate, and hybrid systems.
Blocksets are add-ons to Simulink that provide additional libraries of blocks for specialized applications like communications, signal processing, and power systems.

Real-Time Workshop ${ }^{\circledR}$ is a program that allows you to generate C code from your block diagrams and to run it on a variety of real-time systems.

W hat Is Stateflow?

Stateflow is an interactive design tool for modeling and simulating complex reactive systems. Tightly integrated with Simulink and MATLAB, Stateflow provides Simulink users with an elegant solution for designing embedded systems by giving them an efficient way to incorporate complex control and supervisory logic within their Simulink models.

With Stateflow, you can quickly develop graphical models of event-driven systems using finite state machine theory, statechart formalisms, and flow diagram notation. Together, Stateflow and Simulink serve as an executable specification and virtual prototype of your system design.

Note Your Student Version of MATLAB \& Simulink includes a comprehensive demo version of Stateflow.

Installation

Installing on Windows 2-2

Installing on Linux 2-7

Installing on Windows

System Requirements

Note For the most up-to-date information about system requirements, see the system requirements page, available in the Products area at the MathWorks Web site (www. mat hworks. com).

MATLAB and Simulink

- Intel-based Pentium, Pentium Pro, Pentium II, Pentium III, or AMD Athlon personal computer
- Microsoft Windows 95, Windows 98, Windows 2000, Windows Me, or Windows NT 4.0 (with Service Pack 5 or 6a)
- CD-ROM drive for installation, program execution, and online documentation
- Disk space varies depending on size of partition. The MathWorks Installer will inform you of the disk space requirement for your particular partition.
- 64 MB RAM minimum; 128 MB RAM strongly recommended
- 8-bit graphics adapter and display (for 256 simultaneous colors)
- Netscape Navigator 4.0 or higher or Microsoft Internet Explorer 4.0 or higher is required.

Other recommended items include:

- Microsoft Windows supported graphics accelerator card
- Microsoft Windows supported printer
- Microsoft Windows supported sound card
- Microsoft Word 7.0 (Office 95), or 8.0 (Office 97), or Office 2000 is required to run the MATLAB Notebook.

Adobe Acrobat Reader is required to view and print the MATLAB online documentation that is in PDF format.

MEX-Files

MEX-files are dynamically linked subroutines that MATLAB can automatically load and execute. They provide a mechanism by which you can call your own C and F ortran subroutines from MATLAB as if they were built-in functions.

For More Information "External Interfaces/API" provides information on how to write MEX-files. "External Interfaces/API Reference" describes the collection of API functions. Both of these are available from Help.

If you plan to build your own MEX-files, one of the following is required:

- Borland C/C++version 5.0 or 5.02
- Borland C+HBuilder version 3.0, 4.0, or 5.0
- Compaq Visual Fortran version 6.1
- DIGITAL Visual F ortran version 5.0
- Lcc C version 2.4 (included with MATLAB)
- Microsoft Visual C/C++ version 5.0 or 6.0
- Watcom C/C++ version 10.6 or 11

Note For an up-to-date list of all the compilers supported by MATLAB, see the MathWorks Technical Support Department's Technical Notes at:
http://www. mathworks.com/support/tech-notes/v5/1600/1601.shtml

Installing MATLAB

This list summarizes the steps in the standard installation procedure. Y ou can perform the installation by simply following the instructions in the dialog boxes presented by the installation program; it walks you through this process.

1 Turn off any virus protection software you have running.
2 Exit any existing copies of MATLAB you have running.
3 Insert the MathWorks product CD into your CD-ROM drive. The installation program starts automatically when theCD-ROM driveis ready. You can also run set up. exe from the product CD.

4 Install the Microsoft J ava Virtual Machine (J VM), if prompted. The MathWorks Installer requires the Microsoft J VM.

Note: TheJ ava installation requires a system reboot.
5 View the Welcome screen and review the Software License Agreement.
6 Review the Student Use Policy.
7 Enter your name and school name.
8 To install the complete set of software (MATLAB, Simulink, and the Symbolic Math Tool box), make sureall of the components areselected in the Product List dialog box.

9 Specify the destination directory, that is, the directory where you want to save the files on your hard drive. To change directories, use the Browse button.

10 When the installation is complete, verify the installation by starting MATLAB and running one of the demo programs. To start MATLAB, double-click on the MATLAB icon that theinstaller creates on your desktop. To run the demo programs, select Demos from Help.

[^0]11 Customize any MATLAB environment options, if desired. For example, to include default definitions or any MATLAB expressions that you want executed every time MATLAB is invoked, create a file named st art up. m in the \$MATLAB\tool box\Iocal directory. MATLAB executes this file each time MATLAB is invoked.

12 Perform any additional configuration by typing the appropriate command at the MATLAB command prompt. F or example, to configure the MATLAB Notebook, typenotebook - setup. To configure a compiler to work with the MATLAB Application Program Interface, type mex - set up .

For More Information The MATLAB Installation Guide for PC provides additional installation information. This manual is available from Help.

Installing Additional Toolboxes

To purchase additional tool boxes, visit the M athWorks Store at (www. mathworks.com/store). Once you purchase a toolbox, it is downloaded to your computer.

When you download a toolbox, you receive an installation program for the tool box. To install the tool box, run the installation program by double-clicking on its icon. After you successfully install the tool box, all of its functionality will be available to you when you start MATLAB.

[^1]
Accessing the Online Documentation (Help)

Access the online documentation (Help) directly from your documentation CD.
1 Place the documentation CD in your CD-ROM drive.
2 Select Full Product Family Help from the Help menu in the MATLAB Command Window. You can also typehel pbrowser at the MATLAB prompt.

The Help browser appears.

Installing on Linux

Note The Student Version of MATLAB \& Simulink for the Linux platform is only available in the US and Canada.

System Requirements

Note For the most up-to-date information about system requirements, see the system requirements page, available in the products area at the MathWorks Web site (www. mathworks. com).

MATLAB and Simulink

- Intel-based Pentium, Pentium Pro, Pentium II, Pentium III, or AMD Athlon personal computer
- Linux 2.2.x kernel
- glibc 2.1.x (2.1.2 or higher recommended)
- gcc 2.95.2 (gcc, g++, g77)
- xFree86 3.3.x (3.3.6 or higher recommended)
- X Windows (X11R6)
- 110 MB free disk space for MATLAB, Simulink, and Symbolic Math Tool box
- 64 MB memory, additional memory strongly recommended
- 64 MB swap space
- CD-ROM drive for installation and online documentation
- 8-bit graphics adapter and display (for 256 simultaneous colors)
- Netscape Navigator 4.0 or higher is required.

Adobe Acrobat Reader is required to view and print the MATLAB online documentation that is in PDF format.

MEX-Files

MEX-files are dynamically linked subroutines that MATLAB can automatically load and execute. They provide a mechanism by which you can call your own C and F ortran subroutines from MATLAB as if they were built-in functions.

For More Information "External Interfaces/API" provides information on how to write MEX-files. "External Interfaces/API Reference" describes the collection of API functions. Both of these are available from Help.

If you plan to build your own MEX-files, you need an ANSIC C compiler (e.g., the GNU C compiler, gcc).

Note For an up-to-date list of all the compilers supported by MATLAB, see the MathWorks Technical Support Department's Technical Notes at:
http://www. mathworks.com/support/tech-notes/v5/1600/1601.shtml

Installing MATLAB

The following instructions describe how to install the Student Version of MATLAB \& Simulink on your computer.

Note It is recommended that you log in as root to perform your installation.

Installing the Software

To install the Student Version:
1 If your CD-ROM drive is not accessible to your operating system, you will need to create a directory to be the mount point for it.
mkdir /cdrom
2 Place the MathWorks product CD into the CD-ROM drive.

3 Execute the command to mount the CD-ROM drive on your system. For example,

```
# mount -t i sog660 /dev/cdrom /cdrom
```

should work on most systems. If your / et c/fstab file has a line similar to / dev/cdrom /cdromisog660 noauto, ro, user, exec 0
then nonroot users can mount the CD-ROM using the simplified command \$ mount /cdrom

Note If theexec option is missing (as it often is by default, for security reasons), you will receive a "Permission denied" error when attempting to run the install script. To remedy this, either use the full mount command shown above (as root) or add theexec option to the file/etc/fstab.

4 Move to the installation location using thecd command. F or example, if you are going to install into the location / us r/local/ matlab6, use the commands

```
cd /usr/|ocal
mkdir matlab6
cd matlab6
```

Subsequent instructions in this section refer to this directory as $\$$ MATLAB.
5 Run the CD install script.
/cdrom/instal|_g|nx86.sh
The wel come screen appears. Select OK to proceed with the installation.

Note If you need additional help on any step during this installation process, click the Help button at the bottom of the dialog box.

6 Accept or reject the software licensing agreement displayed. If you accept the terms of the agreement, you may proceed with the installation.

7 The MATLAB Root Directory screen is displayed. Select OK if the pathname for the MATLAB root directory is correct; otherwise, change it to the desired location.

8 The system displays your license file. Press OK.

9 The installation program displays the Product Installation Options screen, which is similar to this.

The products you are licensed to install are listed in the Items to install list box. The right list box displays the products that you do not want to install. To install the complete Student Version of MATLAB \& Simulink, you must install all the products for which you are licensed (MATLAB, MATLAB Tool box, MATLAB Kernel, Simulink, and Symbolic Math Toolbox). Select OK.

10 The installation program displays the Installation Data screen.

Specify the directory location in your file system for symbolic links to the matlab and mex scripts. Choose a directory such as/usr/local/bin. You must be logged in as root to do this.

Select OK to continue.
11 The Begin Product Installation screen is displayed. Select OK to start the installation. After the installation is complete, the Product Installation Complete screen is displayed, assuming your installation is successful. Select Exit to exit from the setup program.

12 You must edit the docopt.m M-file located in the $\$$ MATLAB/toolbox/local directory to specify the path to the online documentation (Help). F or example, if / cdrom is the path to your CD-ROM drive, then you would use /cdrom/help. To set the path using this example, change the lines in the if isunix block in thedocopt.m fileto

```
if isunix % UNIX
```

\% doccmd = '1;
\% options = '';
docpath $=$ '/cdrom/help';

Thedocopt. m file also allows you to specify an alternative Web browser or additional initial browser options. It is configured for Netscape Navigator.

13 If desired, customize any MATLAB environment options. For example, to include default definitions or any MATLAB expressions that you want executed every time MATLAB is invoked, create a file named st art up. m in the $\$$ MATLAB/t 001 box/local directory. MATLAB executes this file each time MATLAB is invoked.

14 Start MATLAB by entering the mat I ab command. If you did not set up symbolic links in a directory on your path, type $\$$ MATLAB/bi n/ mat I ab.

Post Installation Procedures

Successful Installation

If you want to use the MATLAB Application Program Interface, you must configure the mex script to work with your compiler. Also, some toolboxes may require some additional configuration. For more information, see "Installing Additional Toolboxes" later in this section.

Unsuccessful Installation

If MATLAB does not execute correctly after installation:
1 Check the "R12 Release Notes" for the latest information concerning installation. This document is accessible from Help.

2 Repeat the installation procedure from the beginning but run the CD install script using the - t option.
/cdrom/install_glnx86.sh - t

For More Information The MATLAB Installation Guide for UNIX provides additional installation information. This manual is available from Help.

Installing Additional Toolboxes

To purchase additional toolboxes, visit the MathWorks Store at (www. mat hworks. com/store). Once you purchase a tool box, it is downloaded to your computer. When you download a tool box on Linux, you receive a tar file (a standard, compressed formatted file).

To install the toolbox, you must:
1 Place the tar file in \$MATLAB and un-tar it.
tar -xf filename
2 Runinstall.
After you successfully install the toolbox, all of its functionality will be available to you when you start MATLAB.

Note Some toolboxes have Readme files associated with them. When you download the tool box, check to see if there is a ReadMe file. These files contain important information about the tool box and possibly installation and configuration notes. To view the ReadMe file for a toolbox, use the what snew command.

Accessing the Online Documentation (Help)

Access the online documentation (Help) directly from your documentation CD.
1 Place the documentation CD in your CD-ROM drive and mount it.
2 Select Full Product Family Help from the Help menu in the MATLAB Command Window. You can also typehel pbrowser at the MATLAB prompt.

The Help browser appears.

Development Environment

Introduction 3-2
Starting and Quitting MATLAB 3-3
MATLAB Desktop 3-4
Desktop Tools 3-6
Other Development Environment Features 3-15

Introduction

This chapter provides a brief introduction to starting and quitting MATLAB, and the tools and functions that help you to work with MATLAB variables and files. F or more information about the topics covered here, see the corresponding topics under "Devel opment Environment" in the MATLAB documentation, which is available online.

Starting and Quitting MATLAB

Starting MATLAB

On a Microsoft Windows platform, to start MATLAB, double-click the MATLAB shortcut icon on your Windows desktop.
On Linux, to start MATLAB, type mat lab at the operating system prompt.

Note On the Microsoft Windows platform, the documentation CD must be in your CD-ROM drive to start MATLAB. On both platforms, the documentation CD must be in your CD-ROM drive to access the online documentation.

After starting MATLAB, the MATLAB desktop opens - see "MATLAB Desktop" on page 3-4.

You can change the directory in which MATLAB starts, define startup options including running a script upon startup, and reduce startup time in some situations.

Quitting MATLAB

To end your MATLAB session, select Exit MATLAB from the File menu in the desktop, or typequit in the Command Window. To execute specified functions each time MATLAB quits, such as saving the workspace, you can create and run afinish.m script.

MATLAB Desktop

When you start MATLAB, the MATLAB desktop appears, containing tools (graphical user interfaces) for managing files, variables, and applications associated with MATLAB.

The first time MATLAB starts, the desktop appears as shown in the following illustration, although your Launch Pad may contain different entries.

You can change the way your desktop looks by opening, closing, moving, and resizing the tools in it. Y ou can also move tools outside of the desktop or return them back inside the desktop (docking). All the desktop tools provide common features such as context menus and keyboard shortcuts.
You can specify certain characteristics for the desktop tools by selecting Preferences from the File menu. For example, you can specify the font characteristics for Command Window text. For more information, click the Help button in the Preferences dialog box.

Desktop Tools

This section provides an introduction to MATLAB's desktop tools. You can also use MATLAB functions to perform most of the features found in the desktop tools. The tools are:

- "Command Window" on page 3-6
- "Command History" on page 3-7
- "Launch Pad" on page 3-8
- "Help Browser" on page 3-8
- "Current Directory Browser" on page 3-11
- "Workspace Browser" on page 3-12
- "Array Editor" on page 3-13
- "Editor/Debugger" on page 3-14

Command Window

Use the Command Window to enter variables and run functions and M-files. For more information on controlling input and output, see "Controlling Command Window Input and Output" on page 4-28.

Command History

Lines you enter in the Command Window are logged in the Command History window. In the Command History, you can view previously used functions, and copy and execute selected lines.

To save the input and output from a MATLAB session to a file, use the di a ry function.

Note If other users share the same machine with you, using the same log in information, then they will have access to the functions you ran during a session via the Command History. If you do not want other users to have access to the Command History from your session, select Clear Command History from the E dit menu before you quit MATLAB.

Running External Programs

Y ou can run external programs from the MATLAB Command Window. The exclamation point character ! is a shell escapeand indicates that the rest of the input line is a command to the operating system. This is useful for invoking
utilities or running other programs without quitting MATLAB. On Linux, for example,

```
!emacs magik.m
```

invokes an editor called emacs for a file named magik. m. When you quit the external program, the operating system returns control to MATLAB.

Launch Pad

MATLAB's Launch Pad provides easy access to tools, demos, and documentation.

Sample of listings in Launch Pad - you'll see listings for all products installed on your system.

Help Browser

Use the Help browser to search and view documentation for all MathWorks products. The Help browser is a Web browser integrated into the MATLAB desktop that displays HTML documents.

To open the Help browser, click the help button ? in the tool bar, or type hel pbrowser in the Command Window.

The Help browser consists of two panes, the Help Navigator, which you use to find information, and the display pane, where you view the information.

Help Navigator

Use to Help Navigator to find information. It includes:

- Product filter - Set the filter to show documentation only for the products you specify.

Note In the Student Version of MATLAB \& Simulink, the product filter is initially set to display a subset of the entire documentation set. You can add or delete which product documentation is displayed by using the product filter.

- Contents tab - View the titles and tables of contents of documentation for your products.
- Index tab - Find specific index entries (selected keywords) in the MathWorks documentation for your products.
- Search tab-Look for a specific phrase in the documentation. To get help for a specific function, set the Search type to Function Name.
- Favorites tab - View a list of documents you previously designated as favorites.

Display Pane

After finding documentation using the Help Navigator, view it in the display pane. While viewing the documentation, you can:

- Browse to other pages - Use the arrows at the tops and bottoms of the pages, or use the back and forward buttons in the tool bar.
- Bookmark pages - Click the Add to Favorites button in the tool bar.
- Print pages - Click the print button in the tool bar.
- Find a term in the page - Type a term in theFind in page field in the tool bar and click Go.
Other features available in the display pane are: copying information, evaluating a selection, and viewing Web pages.

For More Help

In addition to the Help browser, you can use help functions. To get help for a specific function, usedoc. For example, doc for mat displays help for the
for mat function in the Help browser. Other means for getting help include contacting Technical Support (http: / / www. mathworks.com/support) and participating in the newsgroup for MATLAB users, comp. soft-sys. matlab.

Current Directory Brow ser

MATLAB file operations use the current directory and the search path as reference points. Any file you want to run must either be in the current directory or on the search path.

A quick way to view or change the current directory is by using the Current Directory field in the desktop tool bar as shown below.

```
Current Directony: Dimymfiles 
```

To search for, view, open, and make changes to MATLAB-related directories and files, use the MATLAB Current Directory browser. Alternatively, you can use the functions dir,cd, and del ete.

Search Path

To determine how to executefunctions you call, MATLAB uses a search path to find M-files and other MATLAB-related files, which are organized in directories on your file system. Any file you want to run in MATLAB must reside in the current directory or in a directory that is on the search path. By default, the files supplied with MATLAB and MathWorks tool boxes are included in the search path.

To see which directories are on the search path or to change the search path, select Set Path from the File menu in the desktop, and use the Set Path dialog box. Alternatively, you can use the pat h function to view the search path, addpat h to add directories to the path, and rmp at h to remove directories from the path.

Workspace Browser

The MATLAB workspace consists of the set of variables (named arrays) built up during a MATLAB session and stored in memory. You add variables to the workspace by using functions, running M -files, and loading saved workspaces.
To view the workspace and information about each variable, use the Workspace browser, or use the functions who and whos.

To delete variables from the workspace, select the variable and select Delete from the Edit menu. Alternatively, use the cl ear function.

The workspace is not maintained after you end the MATLAB session. To save the workspace to a file that can be read during a later MATLAB session, sel ect
Save Workspace As from the File menu, or use the s a ve function. This saves the workspace to a binary file called a MAT-file, which has a . mat extension. There are options for saving to different formats. To read in a MAT-file, select Import Data from the File menu, or use the load function.

Array Editor

Double-click on a variable in the Workspace browser to see it in the Array Editor. Use the Array Editor to view and edit a visual representation of one or two-dimensional numeric arrays, strings, and cell arrays of strings that are in the workspace.

Editor/ Debugger

Use the E ditor/Debugger to create and debug M-files, which are programs you write to run MATLAB functions. The Editor/Debugger provides a graphical user interface for basic text editing, as well as for M-file debugging.

Comment selected lines and specify indenting style using the Text menu. Find and replace strings.

Y ou can use any text editor to create M-files, such as Emacs, and can use preferences (accessible from the desktop File menu) to specify that editor as the default. If you use another editor, you can still use the MATLAB Editor/ Debugger for debugging, or you can use debugging functions, such as dbstop, which sets a breakpoint.

If you just need to view the contents of an M-file, you can display it in the Command Window by using the type function.

Other Development Environment Features

Additional development environment features are:

- Importing and Exporting Data - Techniques for bringing data created by other applications into the MATLAB workspace, including the Import Wizard, and packaging MATLAB workspace variables for use by other applications.
- Improving M-File Performance - The Profiler is a tool that measures where an M-file is spending its time. Use it to help you make speed improvements.
- Interfacing with SourceControl Systems - Access your source control system from within MATLAB, Simulink, and Stateflow.
- Using N otebook - Access MATLAB’s numeric computation and visualization software from within a word processing environment (Microsoft Word).

Getting Started

Matrices and Magic Squares 4-2
Expressions 4-10
Working with Matrices 4-14
More About Matrices and Arrays 4-18
Controlling Command Window Input and Output 4-28

Matrices and Magic Squares

In MATLAB, a matrix is a rectangular array of numbers. Special meaning is sometimes attached to 1-by-1 matrices, which are scalars, and to matrices with only one row or column, which are vectors. MATLAB has other ways of storing both numeric and nonnumeric data, but in the beginning, it is usually best to think of everything as a matrix. The operations in MATLAB are designed to be as natural as possible. Where other programming languages work with numbers one at a time, MATLAB allows you to work with entire matrices quickly and easily. A good examplematrix, used throughout this book, appears in the Renaissance engraving M elancholial by the German artist and amateur mathematician Albrecht Dürer.

This image is filled with mathematical symbolism, and if you look carefully, you will seea matrix in the upper right corner. This matrix is known as a magic square and was believed by many in Dürer's time to have genuinely magical properties. It does turn out to have some fascinating characteristics worth exploring.

Entering Matrices

The best way for you to get started with MATLAB is to learn how to handle matrices. Start MATLAB and follow along with each example.

You can enter matrices into MATLAB in several different ways:

- Enter an explicit list of elements.
- Load matrices from external data files.
- Generate matrices using built-in functions.
- Create matrices with your own functions in M-files.

Start by entering Dürer's matrix as a list of its elements. You have only to follow a few basic conventions:

- Separate the elements of a row with blanks or commas.
- Use a semicolon, ; , to indicate the end of each row.
- Surround the entire list of elements with square brackets, [].

To enter Dürer's matrix, simply type in the Command Window

$$
A=\left[\begin{array}{llllllllllllllll}
16 & 3 & 2 & 13 ; & 10 & 11 & 8 ; & 9 & 7 & 12 ; & 15 & 14 & 1
\end{array}\right]
$$

MATLAB displays the matrix you just entered, $A=$

16	3	2	13
5	10	11	8
9	6	7	12
4	15	14	1

This exactly matches the numbers in the engraving. Once you have entered the matrix, it is automatically remembered in the MATLAB workspace. Y ou can refer to it simply as A. Now that you have A in the workspace, take a look at what makes it so interesting. Why is it magic?

sum, transpose, and diag

Y ou're probably already aware that the special properties of a magic square have to do with the various ways of summing its elements. If you take the sum along any row or column, or along either of the two main diagonals, you will always get the same number. Let's verify that using MATLAB. The first statement to try is
sum(A)
MATLAB replies with
ans =
$\begin{array}{llll}34 & 34 & 34 & 34\end{array}$
When you don't specify an output variable, MATLAB uses the variable ans, short for ans wer , to store the results of a calculation. You have computed a row vector containing the sums of the columns of A. Sure enough, each of the columns has the same sum, the ma gic sum, 34.
How about the row sums? MATLAB has a preference for working with the columns of a matrix, so the easiest way to get the row sums is to transpose the matrix, compute the column sums of the transpose, and then transpose the result. The transpose operation is denoted by an apostrophe or single quote, ' . It flips a matrix about its main diagonal and it turns a row vector into a column vector. So
A^{\prime}
produces

```
    ans =
        16 5 9
        3}10\quad6 1
        2 11 
        13 8 12 1
And
    sum(A')'
```

produces a column vector containing the row sums
ans =
34
34
34
34

The sum of the elements on the main diagonal is easily obtained with the help of thediag function, which picks off that diagonal.
diag(A)
produces
ans =
16
10
7
1
and
sum(diag(A))
produces
ans =
34
The other diagonal, the so-called antidiagonal, is not so important mathematically, so MATLAB does not have a ready-madefunction for it. But a function originally intended for usein graphics, fliplr, flips a matrix from left to right.
sum(diag(fliplr(A)))
ans =
34
You have verified that the matrix in Dürer's engraving is indeed a magic square and, in the process, have sampled a few MATLAB matrix operations. The following sections continue to use this matrix to illustrate additional MATLAB capabilities.

Subscripts

The element in row i and column j of A is denoted by $A(i, j)$. For example, $A(4,2)$ is the number in the fourth row and second column. For our magic square, $A(4,2)$ is 15 . So it is possible to compute the sum of the elements in the fourth column of A by typing

```
A(1,4) + A(2,4) + A( 3,4) + A(4,4)
```

This produces
ans =
34
but is not the most elegant way of summing a single column.
It is also possible to refer to the elements of a matrix with a single subscript, $A(k)$. This is the usual way of referencing row and column vectors. But it can also apply to a fully two-dimensional matrix, in which case the array is regarded as one long column vector formed from the columns of the original matrix. So, for our magic square, A(8) is another way of referring to the value 15 stored in A(4, 2).

If you try to use the value of an element outside of the matrix, it is an error.

```
t = A(4,5)
Index exceeds matrix dimensions.
```

On the other hand, if you storea value in an element outside of the matrix, the size increases to accommodate the newcomer.

```
X = A;
X(4,5)=17
```

```
X =
\begin{tabular}{rrrrr}
16 & 3 & 2 & 13 & 0 \\
5 & 10 & 11 & 8 & 0 \\
9 & 6 & 7 & 12 & 0 \\
4 & 15 & 14 & 1 & 17
\end{tabular}
```


The Colon Operator

The col on, : , is one of MATLAB's most important operators. It occurs in several different forms. The expression

1:10
is a row vector containing the integers from 1 to 10

1	2	3	4	5	6	7	8	9	10

To obtain nonunit spacing, specify an increment. F or example,

$$
100: 7: 50
$$

is
$\begin{array}{llllllll}100 & 93 & 86 & 79 & 72 & 65 & 58 & 51\end{array}$
and
0:pi/4:pi
is
$0 \quad 0.7854$

1. 5708
2. 3562
3. 1416

Subscript expressions involving colons refer to portions of a matrix.

$$
A(1: k, j)
$$

is the first k elements of the j th column of A. So

```
sum(A(1:4,4))
```

computes the sum of the fourth column. But there is a better way. The col on by itself refers to all the elements in a row or column of a matrix and the keyword end refers to the last row or column. So
$\operatorname{sum}(A(:, e n d))$
computes the sum of the elements in the last column of A.
ans =
34
Why is the magic sum for a 4-by-4 square equal to 34 ? If the integers from 1 to 16 are sorted into four groups with equal sums, that sum must be
sum(1:16)/4
which, of course, is
ans =
34
Using the Symbolic Math Tool box, you can discover that the magic sum for an n-by-n magic square is $\left(n^{3}+n\right) / 2$.

The magic Function

MATLAB actually has a built-in function that creates magic squares of almost any size. N ot surprisingly, this function is named magic.

```
B = magic(4)
B =
    16 2 3 13
```



```
    9 7 0 6 12
    4 14 15 1
```

This matrix is almost the same as the one in the Dürer engraving and has all the same "magic" properties; the only difference is that the two middle columns are exchanged. To make this B into Dürer's A, swap the two middle columns.

$$
A=B\left(:,\left[\begin{array}{llll}
1 & 3 & 2 & 4
\end{array}\right]\right)
$$

This says "for each of the rows of matrix B, reorder the elements in the order 1 , 3, 2, 4." It produces
$A=$

16	3	2	13
5	10	11	8
9	6	7	12
4	15	14	1

Why would Dürer go to the trouble of rearranging the columns when he could have used MATLAB's ordering? No doubt he wanted to include the date of the engraving, 1514, at the bottom of his magic square.

For More Information "Using MATLAB," which is accessible from Help, provides comprehensive material on the devel opment environment, mathematics, programming and data types, graphics, 3-D visualization, external interfaces/API, and creating graphical user interfaces in MATLAB.

Expressions

Like most other programming languages, MATLAB provides mathematical expressions, but unlike most programming languages, these expressions involve entire matrices. The building blocks of expressions are:

- Variables
- Numbers
- Operators
- Functions

Variables

MATLAB does not require any type declarations or dimension statements. When MATLAB encounters a new variable name, it automatically creates the variable and allocates the appropriate amount of storage. If the variable already exists, MATLAB changes its contents and, if necessary, allocates new storage. For example,

```
num_students=25
```

creates a 1-by-1 matrix named num_students and stores the value 25 in its single element.

Variable names consist of a letter, followed by any number of letters, digits, or underscores. MATLAB uses only the first 31 characters of a variable name. MATLAB is case sensitive; it distinguishes between uppercase and lowercase letters. A and a are not the same variable. To view the matrix assigned to any variable, simply enter the variable name.

Numbers

MATLAB uses conventional decimal notation, with an optional decimal point and leading plus or minus sign, for numbers. Scientific notation uses the letter e to specify a power-of-ten scalefactor. Imaginary numbers use either i or j as a suffix. Some examples of legal numbers are

3	-99	0.0001
9.6397238	$1.60210 \mathrm{e}-20$	6.02252 e 23
1 i	-3.14159 j	3 e 5 i

All numbers are stored internally using the long format specified by the IEEE floating-point standard. Floating-point numbers have a finite precision of roughly 16 significant decimal digits and a finite range of roughly 10^{-308} to 10^{+308}.

Operators

Expressions use familiar arithmetic operators and precedence rules.

+	Addition
-	Subtraction
$*$	Multiplication
।	Division
I	Left division (described in "Matrices and Linear
	Algebra" in Using MATLAB)
A	Power
() Complex conjugate transpose	

Functions

MATLAB provides a large number of standard elementary mathematical functions, including abs, sqrt, exp, andsin. Taking the square root or logarithm of a negative number is not an error; the appropriate complex result is produced automatically. MATLAB also provides many more advanced mathematical functions, including Bessel and gamma functions. Most of these functions accept complex arguments. F or a list of the elementary mathematical functions, type

```
help elfun
```

For a list of more advanced mathematical and matrix functions, type

```
help specfun
help elmat
```

For More Information Appendix A, "MATLAB Quick Reference," contains brief descriptions of the MATLAB functions. Use Help to access complete descriptions of all the MATLAB functions by category or alphabetically.

Some of the functions, likes qrt and sin, are built-in. They are part of the MATLAB core so they are very efficient, but the computational details are not readily accessible. Other functions, like ga mma and sinh, are implemented in M-files. You can see the code and even modify it if you want.

Several special functions provide values of useful constants.

pi	3.14159265...
i	Imaginary unit, $\sqrt{-1}$
j	Sameas i
eps	Floating-point relative precision, 2^{-52}
real min	Smallest floating-point number, 2^{-1022}
real max	Largest floating-point number, $(2-\varepsilon) 2^{1023}$
Inf	Infinity
NaN	Not-a-number

Infinity is generated by dividing a nonzero value by zero, or by evaluating well defined mathematical expressions that overflow, i.e., exceed real max. Not-a-number is generated by trying to evaluate expressions like $0 / 0$ or Inf-Inf that do not have well defined mathematical values.
The function names are not reserved. It is possible to overwrite any of them with a new variable, such as

```
eps = 1.e-6
```

and then use that value in subsequent calculations. The original function can be restored with

```
clear eps
```


Examples of Expressions

You have already seen several examples of MATLAB expressions. Here are a few more examples, and the resulting values.

```
rho = (1+sqrt(5))/2
rho =
    1.6180
a= abs(3+4i)
a =
    5
z = sqrt(besselk(4/3,rho-i))
z =
    0.3730+0.3214i
huge = exp(log(realmax))
huge =
    1.7977e+308
toobig = pi*huge
toobig=
    l nf
```


Working with Matrices

This section introduces you to other ways of creating matrices.

Generating Matrices

MATLAB provides four functions that generate basic matrices.

zeros	All zeros
ones	All ones
rand	Uniformly distributed random elements
randn	Normally distributed random elements

Here are some examples.

```
    z = zeros(2,4)
    Z =
        0
    F = 5*ones(3,3)
    F =
\begin{tabular}{lll}
5 & 5 & 5 \\
5 & 5 & 5 \\
5 & 5 & 5
\end{tabular}
N = fix(10*rand(1,10))
N =
            4 [llllllllll
R = randn(4,4)
R =
        1.0668 0.2944 -0.6918 - 1.4410
        0.0593 -1.3362 0.8580 0.5711
        -0.0956 0.7143 1.2540 -0.3999
        -0.8323 1.6236 -1.5937 0.6900
```


The load Command

Thel oad command reads binary files containing matrices generated by earlier MATLAB sessions, or reads text files containing numeric data. The text file should be organized as a rectangular table of numbers, separated by blanks, with one row per line, and an equal number of elements in each row. For example, outside of MATLAB, create a text file containing these four lines.

16.0	3.0	2.0	13.0
5.0	10.0	11.0	8.0
9.0	6.0	7.0	12.0
4.0	15.0	14.0	1.0

Store the file under the name magik. dat. Then the command

```
load magik.dat
```

reads the file and creates a variable, magik, containing our example matrix.
An easy way to read data into MATLAB in many text or binary formats is to use the I mport Wizard.

M-Files

You can create your own matrices using M-files, which are text files containing MATLAB code. Use the MATLAB Editor or another text editor to create a file containing the same statements you would type at the MATLAB command line. Save the file under a name that ends in . m.

F or example, create a file containing these five lines.
$\left.\begin{array}{rrrr}A=[& & & \\ 16.0 & 3.0 & 2.0 & 13.0 \\ 5.0 & 10.0 & 11.0 & 8.0 \\ 9.0 & 6.0 & 7.0 & 12.0 \\ 4.0 & 15.0 & 14.0 & 1.0\end{array}\right] ;$

Store the file under the name magik. m. Then the statement magik
reads the file and creates a variable, A, containing our example matrix.

Concatenation

Concatenation is the process of joining small matrices to make bigger ones. In fact, you made your first matrix by concatenating its individual elements. The pair of square brackets, [] , is the concatenation operator. For an example, start with the 4-by-4 magic square, A, and form

```
B =[[A A+32; A+48 A+16]
```

The result is an 8-by-8 matrix, obtained by joining the four submatrices.
B =

16	3	2	13	48	35	34	45
5	10	11	8	37	42	43	40
9	6	7	12	41	38	39	44
4	15	14	1	36	47	46	33
64	51	50	61	32	19	18	29
53	58	59	56	21	26	27	24
57	54	55	60	25	22	23	28
52	63	62	49	20	31	30	17

This matrix is half way to being another magic square. Its elements are a rearrangement of the integers $1: 64$. Its column sums are the correct value for an 8-by-8 magic square.

```
sum(B)
ans=
    260 260 260 260 260 260 260 260
```

But its row sums, sum(B') ' , are not all the same. Further manipulation is necessary to make this a valid 8 -by- 8 magic square.

Deleting Rows and Columns

You can delete rows and columns from a matrix using just a pair of square brackets. Start with

$$
X=A ;
$$

Then, to delete the second column of x, use

$$
X(:, 2)=[]
$$

This changes x to

$X=$| | | |
| ---: | ---: | ---: |
| 16 | 2 | 13 |
| 5 | 11 | 8 |
| 9 | 7 | 12 |
| 4 | 14 | 1 |

If you delete a single element from a matrix, the result isn't a matrix anymore. So, expressions like

$$
x(1,2)=[]
$$

result in an error. However, using a single subscript deletes a single element, or sequence of elements, and reshapes the remaining elements into a row vector. So

$$
x(2: 2: 10)=[]
$$

results in

```
X =
    16 9
```


More About Matrices and Arrays

This sections shows you more about working with matrices and arrays, focusing on:

- Linear algebra
- Arrays
- Multivariate data

Linear Algebra

Informally, the terms matrix and array are often used interchangeably. More precisely, a matrix is a two-dimensional numeric array that represents a linear transformation. The mathematical operations defined on matrices are the subject of linear al gebra.

Dürer's magic square
$\mathrm{A}=$

16	3	2	13
5	10	11	8
9	6	7	12
4	15	14	1

provides several examples that give a taste of MATLAB matrix operations. You've already seen the matrix transpose, A '. Adding a matrix to its transpose produces a symmetric matrix.

$A+A^{\prime}$			
ans $=$			
32	8	11	17
8	20	17	23
11	17	14	26
17	23	26	2

Themultiplication symbol, *, denotes the matrix multiplication involving inner products between rows and columns. Multiplying the transpose of a matrix by the original matrix also produces a symmetric matrix.

```
A'*A
ans=
    378 212 206 360
    212 370 368 206
    206 368 370 212
    360 206 212 378
```

The determinant of this particular matrix happens to be zero, indicating that the matrix is singular.

```
d = det(A)
d =
    0
```

The reduced row echel on form of A is not the identity.

$\mathrm{R}=\mathrm{rref}(\mathrm{A})$			
$\mathrm{R}=$			
1	0	0	1
0	1	0	3
0	0	1	3
0	0	0	0

Since the matrix is singular, it does not have an inverse. If you try to compute the inverse with

```
X = inv(A)
```

you will get a warning message

```
Warning: Matrix is close to singular or badly scaled.
    Results may be inaccurate. RCOND = 1.175530e-017.
```

Roundoff error has prevented the matrix inversion algorithm from detecting exact singularity. But the value of r cond, which stands for reci procal condition estimate, is on the order of eps, the floating-point relative precision, so the computed inverse is unlikely to be of much use.

The eigenvalues of the magic square are interesting.

```
e = eig(A)
e =
    34.0000
        8.0000
        0.0000
    8.0000
```

One of the eigenvalues is zero, which is another consequence of singularity. The largest eigenvalue is 34 , the magic sum. That's because the vector of all ones is an eigenvector.

```
v = ones(4,1)
v =
            1
            1
            1
            1
A*V
ans =
            34
            34
            34
            34
```

When a magic square is scaled by its magic sum,

$$
P=A / 34
$$

the result is a doubly stochastic matrix whose row and column sums are all one.

$P=$| | | | |
| :--- | :--- | :--- | :--- |
| 0.4706 | 0.0882 | 0.0588 | 0.3824 |
| 0.1471 | 0.2941 | 0.3235 | 0.2353 |
| 0.2647 | 0.1765 | 0.2059 | 0.3529 |
| | 0.1176 | 0.4412 | 0.4118 | 0.0294

Such matrices represent the transition probabilities in a Markov process. Repeated powers of the matrix represent repeated steps of the process. F or our example, the fifth power
$p \wedge 5$
is

0.2507	0.2495	0.2494	0.2504
0.2497	0.2501	0.2502	0.2500
0.2500	0.2498	0.2499	0.2503
0.2496	0.2506	0.2505	0.2493

This shows that as k approaches infinity, all the elements in the k th power, p^{k}, approach 1/4.
Finally, the coefficients in the characteristic polynomial

```
    poly(A)
```

are

$$
\begin{array}{lllll}
1 & -34 & -64 & 2176 & 0
\end{array}
$$

This indicates that the characteristic polynomial

```
det(A - \lambdaI)
```

is
$\lambda^{4}-34 \lambda^{3}-64 \lambda^{2}+2176 \lambda$
The constant term is zero, because the matrix is singular, and the coefficient of the cubic term is -34, because the matrix is magic!

For More Information All of the MATLAB math functions are described in the "MATLAB Function Reference," which is accessible from Help.

Arrays

When they are taken away from the world of linear algebra, matrices become two dimensional numeric arrays. Arithmetic operations on arrays are done element-by-element. This means that addition and subtraction are the same
for arrays and matrices, but that multiplicative operations are different. MATLAB uses a dot, or decimal point, as part of the notation for multiplicative array operations.

The list of operators includes:

+	Addition
.	Subtraction
.$*$	Element-by-element multiplication
.1	Element-by-element division
.1	Element-by-element left division
.${ }^{*}$	Element-by-element power
.${ }^{\text {. }}$	Unconjugated array transpose

If the Dürer magic square is multiplied by itself with array multiplication

$$
\text { A. } * \text { A }
$$

the result is an array containing the squares of the integers from 1 to 16 , in an unusual order.

```
ans =
    256 9 4 169
        25 100 121 64
        81 36 49 144
        16 225 196 1
```


Building Tables

Array operations are useful for building tables. Supposen is the column vector n = (0:9)';

Then

```
pows =[[\begin{array}{lll}{n}&{n,^2}&{2,^n}\end{array}]
```

builds a table of squares and powers of two.

pows | | | |
| ---: | ---: | ---: |
| 0 | 0 | 1 |
| 1 | 1 | 2 |
| 2 | 4 | 4 |
| 3 | 9 | 8 |
| 4 | 16 | 16 |
| 5 | 25 | 32 |
| 6 | 36 | 64 |
| 7 | 49 | 128 |
| 8 | 64 | 256 |
| 9 | 81 | 512 |

The elementary math functions operate on arrays element by element. So

```
format short g
x = (1:0.1:2)';
logs = [x log10(x)]
```

builds a table of logarithms.

```
|ogs =
```

$1.0 \quad 0$
$1.1 \quad 0.04139$
1.20 .07918
1.30 .11394
$1.4 \quad 0.14613$
$1.5 \quad 0.17609$
$1.6 \quad 0.20412$
$1.7 \quad 0.23045$
$1.8 \quad 0.25527$
$1.9 \quad 0.27875$
$2.0 \quad 0.30103$

Multivariate Data

MATLAB uses column-oriented analysis for multivariatestatistical data. E ach column in a data set represents a variable and each row an observation. The (i, j) th element is the i th observation of the j th variable.

As an example, consider a data set with three variables:

- Heart rate
- Weight
- Hours of exercise per week

For five observations, the resulting array might look like
D =

72	134	3.2
81	201	3.5
69	156	7.1
82	148	2.4
75	170	1.2

The first row contains the heart rate, weight, and exercise hours for patient 1, the second row contains the data for patient 2, and so on. Now you can apply many of MATLAB's data analysis functions to this data set. For example, to obtain the mean and standard deviation of each column:

```
mu = mean(D), sigma = std(D)
mu =
    75.8 161.8 3.48
sigma=
    5.6303 25.499 2.2107
```

For a list of the data analysis functions available in MATLAB, type
help datafun
If you have access to the Statistics Tool box, type
help stats

Scalar Expansion

Matrices and scalars can be combined in several different ways. F or example, a scalar is subtracted from a matrix by subtracting it from each element. The average value of the elements in our magic square is 8.5 , so

$$
B=A \cdot 8.5
$$

forms a matrix whose column sums are zero.
$B=$

7.5	-5.5	-6.5	4.5
-3.5	1.5	2.5	-0.5
0.5	-2.5	-1.5	3.5
-4.5	6.5	5.5	-7.5

$s u m(B)$
ans =
0000
With scalar expansion, MATLAB assigns a specified scalar to all indices in a range. For example,

$$
B(1: 2,2: 3)=0
$$

zeros out a portion of B

$$
B=
$$

7.5	0	0	4.5
-3.5	0	0	-0.5
0.5	-2.5	-1.5	3.5
-4.5	6.5	5.5	-7.5

Logical Subscripting

The logical vectors created from logical and relational operations can be used to referencesubarrays. Suppose X is an ordinary matrix and L is a matrix of the same size that is the result of some logical operation. Then $X(L)$ specifies the elements of X where the elements of L are nonzero.

This kind of subscripting can be done in one step by specifying the logical operation as the subscripting expression. Suppose you have the following set of data.

```
x =
    2.1 1.7 1.6 1.5 NaN 1.9 1.8 1.5 5.1 1.8 1.4 2.2 1.6 1.8
```

The NaN is a marker for a missing observation, such as a failure to respond to an item on a questionnaire. To remove the missing data with logical indexing,
usefinite(x), which is true for all finite numerical values and false for Na N and Inf .

```
\(x=x(f i n i t e(x))\)
\(x=\)
```


Now there is one observation, 5.1, which seems to be very different from the others. It is an outlier. The following statement removes outliers, in this case those elements more than three standard deviations from the mean.

```
x = x(abs(x-mean(x)) <= 3*std(x))
x =
    2.1 1.7 1.6 1.5 1.9 1.8 1.5 1.8 1.4 2.2 1.6 1.8
```

For another example, highlight the location of the prime numbers in Dürer's magic square by using logical indexing and scalar expansion to set the nonprimes to 0 .
$A(\sim \operatorname{sprime}(A))=0$

$A=$| | | | |
| ---: | ---: | ---: | ---: |
| 0 | 3 | 2 | 13 |
| 5 | 0 | 11 | 0 |
| 0 | 0 | 7 | 0 |
| 0 | 0 | 0 | 0 |

The find Function

Thef ind function determines the indices of array elements that meet a given logical condition. In its simplest form, f i ind returns a column vector of indices. Transpose that vector to obtain a row vector of indices. For example,

```
k = find(isprime(A))'
```

picks out the locations, using one-dimensional indexing, of the primes in the magic square.

```
k =
    2 5 5 9 10
```

Display those primes, as a row vector in the order determined by k, with A(k)

```
ans =
```

 \(\begin{array}{llllll}5 & 3 & 2 & 11 & 7 & 13\end{array}\)
 When you usek as a left-hand-side index in an assignment statement, the matrix structure is preserved.

```
A(k) = NaN
A =
    16 NaN NaN NaN
    NaN 10 NaN 8
        9 6 NaN 12
        4}1
```


Controlling Command Window Input and Output

So far, you have been using the MATLAB command line, typing commands and expressions, and seeing the results printed in the Command Window. This section describes how to:

- Control the appearance of the output values
- Suppress output from MATLAB commands
- Enter long commands at the command line
- Edit the command line

The format Command

Thef or mat command controls the numeric format of the values displayed by MATLAB. The command affects only how numbers are displayed, not how MATLAB computes or saves them. Here are the different formats, together with the resulting output produced from a vector x with components of different magnitudes.

Note To ensure proper spacing, use a fixed-width font, such as Fixedsys or Courier.

```
x = [4/3 1.2345e.6]
format short
    1.3333 0.0000
format short e
    1.3333e+000 1.2345e.006
format short g
    1.3333 1.2345e.006
```

```
format Iong
    1.33333333333333 0.00000123450000
format long e
    1.333333333333333e+000 1.2345000000000000e.006
format long g
    1.33333333333333 1.2345e.006
format bank
    1.33 0.00
format rat
    4/3 1/810045
    format hex
    3ff5555555555555 3eb4b6231abfd271
```

If the largest element of a matrix is larger than 10^{3} or smaller than 10^{-3}, MATLAB applies a common scale factor for the short and long formats.

In addition to the for mat commands shown above
format compact
suppresses many of the blank lines that appear in the output. This lets you view more information on a screen or window. If you want more control over the output format, use thesprint f andfprint f functions.

Suppressing Output

If you simply type a statement and press Return or Enter, MATLAB automatically displays the results on screen. However, if you end the line with a semicol on, MATLAB performs the computation but does not display any output. This is particularly useful when you generate large matrices. For example,

```
A = magic(100);
```


Entering Long Command Lines

If a statement does not fit on one line, use three periods, . . . , followed by Return or Enter to indicate that the statement continues on the next line. For example,

```
s=1-1/2 + 1/3-1/4 + 1/5 - 1/6 + 1/7
    1/8 + 1/9 - 1/10 + 1/11 - 1/12;
```

Blank spaces around the $=,+$, and - signs are optional, but they improve readability.

Command Line Editing

Various arrow and control keys on your keyboard allow you to recall, edit, and reuse commands you have typed earlier. F or example, suppose you mistakenly enter

```
rho = (1 + sqt(5))/2
```

You have misspelled sqrt. MATLAB responds with

```
Undefined function or variable 'sqt'.
```

Instead of retyping the entire line, simply press the \uparrow key. The misspelled command is redisplayed. Use the \leftarrow key to move the cursor over and insert the missing r. Repeated use of the \uparrow key recalls earlier lines. Typing a few characters and then the \uparrow key finds a previous line that begins with those characters. You can also copy previously executed commands from the Command History. F or more information, see "Command History" on page 3-7.

The list of available command line editing keys is different on different computers. Experiment to see which of the following keys is available on your machine. (Many of these keys will be familiar to users of the Emacs editor.)

\uparrow	Ctrltp	Recall previous line
\downarrow	Ctrlth	Recall next line
\leftarrow	Ctrl+b	Move back one character
\rightarrow	Ctrlff	Move forward one character
Ctrl +	Ctrl+r	Move right one word
Ctrl \leftarrow	Ctrlt	Move left one word
Home	Ctrlta	Move to beginning of line
End	Ctrle	Move to end of line
Esc	Ctrltu	Clear line
Del	Ctrl+d	Delete character at cursor
Backspace	Ctrlth	Delete character before cursor
	Ctrl+k	Delete to end of line

Tab Completion

MATLAB completes the name of a function, variable, filename, or handle graphics property if you type the first few letters and then press the Tab key. If there is a unique name, the name is automatically completed. If there is more than one name that starts with the letters you typed, press the Tab key again to see a list of the possibilities.

Graphics

Basic Plotting 5-2
Editing Plots 5-14
Mesh and Surface Plots 5-18
Images 5-24
Printing Graphics 5-26
Handle Graphics 5-28
Graphics User Interfaces 5-35
Animations 5-37

Basic Plotting

MATLAB has extensive facilities for displaying vectors and matrices as graphs, as well as annotating and printing these graphs. This section describes a few of the most important graphics functions and provides examples of some typical applications.

For More Information "Graphics" and "3-D Visualization" provide in-depth coverage of MATLAB graphics and visualization tools. Access these from Help.

Creating a Plot

Thepl ot function has different forms, depending on the input arguments. If y is a vector, plot (y) produces a piecewise linear graph of the elements of y versus the index of the elements of y. If you specify two vectors as arguments, plot (x, y) produces a graph of y versus x.

For example, these statements use the col on operator to create a vector of x values ranging from zero to 2π, compute the sine of these values, and plot the result.

```
x = 0:pi/100:2*pi;
y = sin(x);
plot(x,y)
```

Now label the axes and add a title. The characters \backslash pi create the symbol π.

```
xlabel('x = 0:2\pi')
ylabel('Sine of x')
tit|e('Plot of the Sine Function',''FontSize', 12)
```


Multiple Data Sets in One Graph

Multiplex-y pair arguments create multiple graphs with a single call topl ot . MATLAB automatically cycles through a predefined (but user settable) list of colors to allow discrimination between each set of data. For example, these statements plot three related functions of x, each curve in a separate distinguishing color.

```
y2 = sin(x-. 25);
y3 = sin(x-.5);
plot(x,y,x,y2,x,y3)
```

Thel egend command provides an easy way to identify the individual plots.

```
I egend('sin(x)','sin(x-.25)','sin(x-.5)')
```


For More Information See "Defining the Color of Lines for Plotting" in "Axes Properties" in Help.

Specifying Line Styles and Colors

It is possible to specify color, line styles, and markers (such as plus signs or circles) when you plot your data using the pl ot command.
plot (x,y,'color_style_marker')
color_style_marker is a string containing from one to four characters (enclosed in single quotation marks) constructed from a color, a line style, and a marker type:

- Color strings are'c','m','y','r','g','b','w',and'k'. These correspond to cyan, magenta, yellow, red, green, blue, white, and black.
- Linestyle strings are' . ' for solid, ' . - ' for dashed, ' :' for dotted, ' . .' for dash-dot, and 'none' for noline.
- The marker types are' + ', 0^{\prime}, ${ }^{\prime}{ }^{*}$ ' , and ' x ' and the filled marker types ' s ' for square, ' d' for diamond, ' ^' for up triangle, 'v' for down triangle, ' >' for right triangle, ' <' for left triangle, ' p ' for pentagram, ' h ' for hexagram, and none for no marker.

Y ou can also edit col or, line style, and markers interactively. See "E diting Plots" on page 5-14 for more information.

Plotting Lines and Markers

If you specify a marker type but not a linestyle, MATLAB draws only the marker. For example,

```
plot(x,y,'ks')
```

plots black squares at each data point, but does not connect the markers with a line.

The statement

```
plot(x,y,'r:+')
```

plots a red dotted line and places plus sign markers at each data point. You may want to use fewer data points to plot the markers than you use to plot the lines. This example plots the data twice using a different number of points for the dotted line and marker plots.

```
x1 = 0:pi/100:2*pi;
x2 = 0:pi/10:2*pi;
plot(x1,sin(x1),'r:',x2,sin(x2),'r+')
```


For More Information See "Basic Plotting" in Help for more examples of plotting options.

Imaginary and Complex Data

When the arguments topl ot are complex, the imaginary part is ignored except when pl ot is given a single complex argument. For this special case, the command is a shortcut for a plot of the real part versus the imaginary part. Therefore,
plot (Z)
wherez is a complex vector or matrix, is equivalent to

```
plot(real(Z),i mag(Z))
```

F or example,

```
t = 0:pi/10:2*pi;
plot(exp(i*t),'-0')
axis equal
```

draws a 20-sided polygon with little circles at the vertices. The command, axis equal, makes the individual tick mark increments on the x - and y-axes the same length, which makes this plot more circular in appearance.

Adding Plots to an Existing Graph

Thehol d command enables you to add plots to an existing graph. When you type

```
hold on
```

MATLAB does not replace the existing graph when you issue another plotting command; it adds the new data to the current graph, rescaling the axes if necessary.

F or example, these statements first create a contour plot of thepeaks function, then superimpose a pseudocol or plot of the same function.

```
[x,y,z] = peaks;
contour(x,y,z,20,' k')
hold on
pcolor(x,y,z)
shading interp
hold off
```

Thehold on command causes thepcol or plot to becombined with the cont our plot in one figure.

For More Information See "Creating Specialized Plots" in Help for information on a variety of graph types.

Figure Windows

Graphing functions automatically open a new figure window if there are no figure windows already on the screen. If a figure window exists, MATLAB uses that window for graphics output. If there are multiple figure windows open, MATLAB targets the onethat is designated the "current figure" (thelast figure used or clicked in).

To make an existing figure window the current figure, you can click the mouse while the pointer is in that window or you can type
figure(n)
wheren is the number in the figure title bar. The results of subsequent graphics commands are displayed in this window.

To open a new figure window and make it the current figure, type
figure

Clearing the Figure for a New Plot

When a figure already exists, most plotting commands clear the axes and use this figure to create the new plot. However, these commands do not reset figure properties, such as the background col or or the col ormap. If you have set any figure properties in the previous plot, you may want to use the cI f command with thereset option,

```
clf reset
```

before creating your new plot to set the figure's properties to their defaults.

For More Information See "Figure Properties" and the reference page for the figure command in Help. See "Controlling Graphics Output" for information on how to control property resetting in your graphics programs.

Multiple Plots in One Figure

Thesubpl ot command enables you to display multiple plots in the same window or print them on the same piece of paper. Typing

```
subplot(m,n,p)
```

partitions the figure window intoan m-by-n matrix of small subplots and selects thep th subpl ot for the current plot. The plots are numbered along first the top row of the figure window, then the second row, and so on. F or example, these statements plot data in four different subregions of the figure window.

```
t = 0:pi/10:2*pi;
[X,Y,Z] = cylinder(4*cos(t));
subplot(2,2,1); mesh(X)
subplot(2,2,2); mesh(Y)
subplot(2, 2,3); mesh(Z)
subplot(2,2,4); mesh(X,Y,Z)
```


Controlling the Axes

Theaxis command supports a number of options for setting the scaling, orientation, and aspect ratio of plots. You can also set these options interactively. See "Editing Plots" on page 5-14 for more information.

Setting Axis Limits

By default, MATLAB finds the maxima and minima of the data to choose the axis limits to span this range. Theaxis command enables you to specify your own limits

```
axis([xmi n xmax ymin ymax])
```

or for three-dimensional graphs,

```
axis([xmin xmax ymin ymax zmin zmax])
```

Use the command
axis auto
to re-enable MATLAB's automatic limit selection.

Setting Axis Aspect Ratio

axis also enables you to specify a number of predefined modes. For example, axis square
makes the x-axes and y-axes the same length.

```
axis equal
```

makes the individual tick mark increments on the x - and y-axes the same length. This means

```
plot(exp(i*[0:pi/10:2*pi]))
```

followed by either axis square or axis equal turns the oval into a proper circle.

```
axis auto normal
```

returns the axis scaling to its default, automatic mode.

Setting Axis Visibility

You can use the axis command to make the axis visible or invisible.

axis on

makes the axis visible. This is the default.

```
axis off
```

makes the axis invisible.

Setting Grid Lines

The gri d command toggles grid lines on and off. The statement
grid on
turns the grid lines on and
grid off
turns them back off again.

For More Information See theaxis andaxes reference pages and "Axes Properties" in Help.

Axis Labels and Titles

Thexlabel, ylabel, andzlabel commands add x-, y-, and z-axis labels. The title command adds a title at the top of the figure and the ext function inserts text anywhere in the figure. A subset of TeX notation produces Greek letters. Y ou can also set these options interactively. See "E diting Plots" on page 5-14 for more information.

```
t = - pi:pi/100:pi;
y = sin(t);
plot(t,y)
axis([-pi pi - 1 1])
xlabel('-\pi \Ieq {\itt} \leq \pi')
ylabel('sin(t)')
title('Graph of the sine function')
text(1,-1/3,'{\itNote the odd symmetry.}')
```


For More Information See "Formatting Graphs" in Help for additional information on adding labels and annotations to your graphs.

Saving a Figure

To save a figure, select Save from the File menu. The figure is saved as a FIG-file, which you can load using theopen or hgload commands.

Formats for Importing into \mathbf{O} ther Applications

Y ou can export the figure as a standard graphics format, such as TIFF, for use with other applications. To do this, select Export from the File menu. You can also export figures from the command line using thes a veas and print commands.

Editing Plots

MATLAB formats a graph to provide readability, setting the scale of axes, including tick marks on the axes, and using color and line style to distinguish the plots in the graph. However, if you are creating presentation graphics, you may want to change this default formatting or add descriptive labels, titles, legends and other annotations to help explain your data.

MATLAB supports two ways to edit the plots you create:

- Using the mouse to select and edit objects interactively
- Using MATLAB functions at the command-line or in an M-file

Interactive Plot Editing

If you enable plot editing modein the MATLAB figurewindow, you can perform point-and-click editing of the objects in your graph. In this mode, you select the object or objects you want to edit by double-clicking on it. This starts the Property Editor, which provides access to properties of the object that control its appearance and behavior.

For more information about interactive editing, see "Using Plot E diting M ode" on page 5-15. For information about editing object properties in plot editing mode, see "Using the Property Editor" on page 5-16.

> Note Plot editing mode provides an alternative way to access the properties of MATLAB graphic objects. However, you can only access a subset of object properties through this mechanism. You may need to use a combination of interactive editing and command line editing to achieve the effect you desire.

Using Functions to Edit Graphs

If you prefer to work from the MATLAB command line or if you are creating an M-file, you can use MATLAB commands to edit the graphs you create. Taking advantage of MATLAB's Handle Graphics system, you can use the set and get commands to change the properties of the objects in a graph. For more information about using command line, see "Handle Graphics" on page 5-28.

Using Plot Editing Mode

TheMATLAB figurewindow supports a point-and-click styleediting modethat you can use to customize the appearance of your graph. The following illustration shows a figure window with plot editing mode enabled and labels the main plot editing mode features.

Using the Property Editor

In plot editing mode, you can usea graphical user interface, called the Property Editor, to edit the properties of objects in the graph. The Property Editor provides access to many properties of the root, figure, axes, line, light, patch, image, surfaces rectangle, and text objects. For example, using the Property Editor, you can change the thickness of a line, add titles and axes labels, add lights, and perform many other plot editing tasks.
This figure shows the components of the Property Editor interface.

Starting the Property Editor

You start the Property Editor by double-clicking on an object in a graph, such as a line, or by right-clicking on an object and selecting the Properties option from the object's context menu.

Y ou can also start the Property Editor by selecting either the Figure Properties, Axes Properties, or Current Object Properties from the figure window Edit menu. These options automatically enable pl ot editing mode, if it is not already enabled.
Once you start the Property E ditor, keep it open throughout an editing session. It provides access to all the objects in the graph. If you click on another object in the graph, the Property E ditor displays the set of panels associated with that object type. You can also use the Property Editor's navigation bar to select an object in the graph to edit.

To save a figure, select Save from the File menu. To save it using a graphics format, such as TIFF, for use with other applications, select Export from the File menu. Y ou can also save from the command line - use the s a ve a s command, including any options to save the figure in a different format.

Mesh and Surface Plots

MATLAB defines a surface by the z-coordinates of points above a grid in the $x-y$ plane, using straight lines to connect adjacent points. The mesh and surf plotting functions display surfaces in three dimensions. mes h produces wireframe surfaces that col or only the lines connecting the defining points. surf displays both the connecting lines and the faces of the surface in color.

Visualizing Functions of Tw o Variables

To display a function of two variables, $z=f(x, y)$:

- Generate X and Y matrices consisting of repeated rows and columns, respectively, over the domain of the function.
- Use X and Y to evaluate and graph the function.

Themeshgrid function transforms the domain specified by a single vector or two vectors x and y into matrices X and Y for use in evaluating functions of two variables. The rows of X are copies of the vector x and the columns of Y are copies of the vector y.

Example - Graphing the sinc Function

This example evaluates and graphs the two-dimensional sinc function, $\sin (r) / r$, between the x and y directions. R is the distance from origin, which is at the center of the matrix. Adding eps (a MATLAB command that returns the smallest floating-point number on your system) avoids the indeterminate 0/0 at the origin.

```
[X,Y] = meshgrid(-8:.5:8);
R = sqrt(X.^2 + Y.^2) + eps;
Z = sin(R)./R;
mesh(X,Y,Z,'EdgeColor','black')
```


By default, MATLAB colors the mesh using the current colormap. However, this example uses a single-col ored mesh by specifying the Edge Col or surface property. See the surface reference page for a list of all surface properties.

You can create a transparent mesh by disabling hidden line removal.

hidden off

See the hidden reference page for more information on this option.

Example - Colored Surface Plots

A surface plot is similar to a mesh plot except the rectangular faces of the surface are colored. The col or of the faces is determined by the values of z and the col ormap (a col or map is an ordered list of colors). These statements graph the sinc function as a surface plot, select a colormap, and add a color bar to show the mapping of data to color.

```
surf(X,Y,Z)
colormap hsv
colorbar
```


See the col or map reference page for information on colormaps.

For More Information See "Creating 3-D Graphs" in Help for more information on surface plots.

Transparent Surfaces

Y ou can make the faces of a surface transparent to a varying degree. Transparency (referred to as the alpha value) can be specified for the whole object or can be based on an alphamap, which behaves in a way analogous to colormaps. For example,

```
surf(X,Y,Z)
colormap hsv
alpha(.4)
```

produces a surface with a face alpha value of 0.4. Alpha values range from 0 (completely transparent) to 1 (not transparent).

For More Information See "Transparency" in Help for more information on using this feature.

Surface Plots with Lighting

Lighting is the technique of illuminating an object with a directional light source. In certain cases, this technique can make subtle differences in surface shape easier to see. Lighting can also be used to add realism to three-dimensional graphs.

This example uses the same surface as the previous examples, but col ors it red and removes the mesh lines. A light object is then added to the left of the "camera" (that is the location in space from where you are viewing the surface).

```
surf(X,Y,Z,' FaceColor','red','EdgeColor',' none')
camlight left; |ighting phong
```


Manipulating the Surface

The Camera Toolbar provides a way to interactively explore 3-D graphics. Display the tool bar by selecting Camera Toolbar from the figure window's View menu. Here is the tool bar with the orbit camera tool selected:

TheCamera Tool bar enables you to move the camera around the surface object, zoom, add a light, and perform other viewing operations without issuing commands. The following picture shows the surface viewed by orbiting the camera toward the bottom. A scene light has been added to illuminate the underside of the surface, which is not lit by the light added in the previous section.

For More Information See the "Lighting as a Visualization Tool" and "View Control with the Camera Toolbar" in Help for information on these techniques.

Images

Two-dimensional arrays can be displayed as images, wherethe array elements determine brightness or color of the images. For example, the statements

Na me	Size	Bytes	Class
Name	Stze	Bytes	Class
X	648×509	2638656	double array
caption	2×28	112	char array
map	128×3	3072	double array

Ioad the file dur er . mat , adding three variables to the workspace. The matrix x is a 648-by-509 matrix and map is a 128-by-3 matrix that is the col ormap for this image.

Note MAT-files, such as durer, mat, are binary files that can be created on one platform and later read by MATLAB on a different platform.

The elements of X are integers between 1 and 128, which serve as indices into the colormap, map. Then

```
i mage(X)
colormap(map)
axis i mage
```

reproduces Dürer's etching shown at the beginning of this book. A high resolution scan of the magic square in the upper right corner is available in another file. Type
|oad detail
and then use the uparrow key on your keyboard to reexecute the i mage, colormap, andaxis commands. The statement
colormap(hot)
adds some unusual col oring to the sixteenth century etching. The function hot generates a colormap containing shades of reds, oranges, and yellows.

Typically a given image matrix has a specific col ormap associated with it. See the col or map reference page for a list of other predefined colormaps.

For More Information See "Displaying Bit-Mapped Images" in Help for information on the image processing capabilities of MATLAB.

Printing Graphics

You can print a MATLAB figure directly on a printer connected to your computer or you can export the figure to one of the standard graphic file formats supported by MATLAB. There are two ways to print and export figures:

- Using the Print option under the File menu
- Using the print command

Printing from the Menu

There are four menu options under the File menu that pertain to printing:

- The Page Setup option displays a dialog box that enables you to adjust characteristics of the figure on the printed page.
- The Print Setup option displays a dialog box that sets printing defaults, but does not actually print the figure.
- The Print Preview option enables you to view the figure the way it will look on the printed page.
- The Print option displays a dialog box that lets you select standard printing options and print the figure.

Generally, use Print Preview to determine whether the printed output is what you want. If not, use the Page Setup dialog box to change the output settings. Select the Page Setup dialog box Help button to display information on how to set up the page.

Exporting Figure to Graphics Files

The Export option under the File menu enables you to export the figure to a variety of standard graphics file formats.

Using the Print Command

Theprint command provides more flexibility in the type of output sent to the printer and allows you to control printing from M -files. The result can be sent directly to your default printer or stored in a specified file. A wide variety of output formats, including TIFF, JPEG, and PostScript, is available.

For example, this statement saves the contents of the current figure window as color Encapsulated Level 2 PostScript in the file called magicsquare. eps. It
also includes a TIFF preview, which enables most word processors to display the picture

```
print - depsc2 -tiff magicsquare.eps
```

To save the same figure as a TIFF file with a resolution of 200 dpi , use the command

```
print -dtiff -r200 magicsquare.tiff
```

If you type print on the command line,
print
MATLAB prints the current figure on your default printer.

For More Information See the print command reference page and "Basic Printing and Exporting" in Help for more information on printing.

Handle Graphics

When you use a plotting command, MATLAB creates the graph using various graphics objects, such as lines, text, and surfaces (see "Graphics Objects" on page 5-28 for a complete list). All graphics objects have properties that control the appearance and behavior of the object. MATLAB enables you to query the value of each property and set the value of most properties.

Whenever MATLAB creates a graphics object, it assigns an identifier (called a handle) to the object. Y ou can use this handle to access the object's properties. Handle Graphics is useful if you want to:

- Modify the appearance of graphs.
- Create custom plotting commands by writing M-files that create and manipulate objects directly.

Graphics Objects

Graphics objects are the basic elements used to display graphics and user interface elements. This table lists the graphics objects.

Object	Description
Root	Top of the hierarchy corresponding to the computer screen
Figure	Window used to display graphics and user interfaces
Axes	Axes for displaying graphs in a figure
Uicontrol	User interface control that executes a function in response to user interaction
Uimenu	User-defined figure window menu
Uicontextmenu	Pop-up menu invoked by right clicking on a graphics object
Image	Two-dimensional pixel-based picture

Object	Description
Light	Light sources that affect the col oring of patch and surface objects
Line	Line used by functions such as plot , pl ot 3 , s e mi logx
Patch	Filled polygon with edges
Rectangle	Two-dimensional shape varying from rectangles to ovals
Surface	Three-dimensional representation of matrix data created by plotting the value of the data as heights above the x-y plane
Text	Character string

O bject Hierarchy

The objects are organized in a tree structured hierarchy reflecting their interdependence. For example, line objects require axes objects as a frame of reference. In turn, axes objects exist only within figure objects. This diagram illustrates the tree structure.

Creating 0 bjects

Each object has an associated function that creates the object. These functions have the same name as the objects they create. For example, thet ext function creates text objects, the figur e function creates figure objects, and so on. MATLAB's high-level graphics functions (likepl ot and surf) call the appropriate low-level function to draw their respective graphics. For more information about an object and a description of its properties, see the reference page for theobject's creation function. Object creation functions have the same name as the object. F or example, the object creation function for axes objects is called axes.

Commands for Working with Objects

This table lists commands commonly used when working with objects.

Function	Purpose
copyobj	Copy graphics object
del ete	Delete an object
findobj	Find the handle of objects having specified property values
gca	Return the handle of the current axes
gcf	Return the handle of the current figure
gco	Return the handle of the current object
get	Query the value of an objects properties
set	Set the value of an objects properties

For More Information Seethe "MATLAB Function Reference" in Help for a description of each of these functions.

Setting Object Properties

All object properties have default values. However, you may find it useful to change the settings of some properties to customize your graph. There are two ways to set object properties:

- Specify values for properties when you create the object.
- Set the property value on an object that already exists.

For More Information See "Handle Graphics Objects" in Help for information on graphics objects.

Setting Properties from Plotting Commands

You can specify object property values as arguments to object creation functions as well as with plotting function, such asplot, mesh, and surf.

F or example, plotting commands that create lines or surfaces enable you to specify property name/property value pairs as arguments. The command

```
plot(x,y,'LineWidth', 1.5)
```

plots the data in the variables x and y using lines having a Li ne Wi dt h property set to 1.5 points (one point $=1 / 72$ inch). You can set any line object property this way.

Setting Properties of Existing 0 bjects

Tomodify the property values of existing objects, you can usethes et command or, if plot editing mode is enabled, the Property Editor. The Property Editor provides a graphical user interface to many object properties. This section describes how to use the set command. See "Using the Property Editor" on page 5-16 for more information.

Many plotting commands can return the handles of the objects created so you can modify the objects using thes et command. F or example, these statements plot a five-by-five matrix (creating five lines, one per column) and then set the Marker to a square and the Markerfacecol or to green.

```
h = plot(magic(5));
set(h,'Marker','s',MarkerFaceColor','g')
```

In this case, h is a vector containing five handles, one for each of the five lines in theplot. Thes et statement sets theMarker and MarkerFaceCol or properties of all lines to the same values.

Setting Multiple Property Values

If you want to set the properties of each line to a different value, you can use cell arrays to store all the data and pass it to the s et command. F or example, create a plot and save the line handles.

```
h = plot(magic(5));
```

Suppose you want to add different markers to each line and col or the marker's face col or to the same col or as the line. You need to define two cell arrays - one containing the property names and the other containing the desired values of the properties.

Theprop_name cell array contains two elements.

```
prop_name(1) = {'Marker'};
prop_name(2) = {'MarkerFaceColor'};
```

Theprop_val ues cell array contains 10 values - five values for the Marker property and five values for the MarkerFaceCol or property. Notice that prop_values is a two-dimensional cell array. The first dimension indicates which handle in h the values apply to and the second dimension indicates which property the value is assigned to.

```
prop_values(1,1)={'s'};
prop_values(1,2)={get(h(1),'Color')};
prop_values (2,1)={'d'};
prop_values(2,2)={get(h(2),'Color')};
prop_values(3,1)={'o'};
prop_values(3,2)={get(h(3),'Color')};
prop_values(4,1)={'p'};
prop_values(4,2)={get(h(4),'Color')};
prop_values(5,1)={'h'};
prop_values(5,2)={get(h(5),'Color')};
```

The MarkerfaceCol or is always assigned the value of the corresponding line's col or (obtained by getting the line's Col or property with the get command).

After defining the cell arrays, call s et to specify the new property values.

```
set(h, prop_name, prop_values)
```


For More Information See "Structures and Cell Arrays" in Help for information on cell arrays.

Finding the Handles of Existing Objects

Thef indobj command enables you to obtain the handles of graphics objects by searching for objects with particular property values. With findobj you can specify the value of any combination of properties, which makes it easy to pick one object out of many. For example, you may want to find the blue line with square marker having blue face color.

Y ou can also specify which figures or axes to search, if there is more than one. The following sections provide examples illustrating how to use findobj.

Finding All 0 bjects of a Certain Type

Since all objects have a ty pe property that identifies the type of object, you can find the handles of all occurrences of a particular type of object. For example,

```
h = findobj('Type','line');
```

finds the handles of all line objects.

Finding 0 bjects with a Particular Property

Y ou can specify multiple properties to narrow the search. For example,

```
h = findobj('Type','line','Color','r','LineStyle',':');
```

finds the handles of all red, dotted lines.

Limiting the Scope of the Search

You can specify the starting point in the object hierarchy by passing the handle of the starting figure or axes as the first argument. F or example,

```
h = findobj(gca,'Type','text','String','\pi/2');
```

finds the string $\pi / 2$ only within the current axes.

Using findobj as an Argument

Sincef indobj returns thehandles it finds, you can use it in place of the handle argument. For example,

```
set(findobj('Type','line','Color','red'),'LineStyle',':')
```

finds all red lines and sets their line style to dotted.

For More Information See "Accessing Object Handles" in Help for more information.

Graphics User Interfaces

Here is a simple exampleillustrating how to use Handle Graphics to build user interfaces. The statement

```
b = uicontrol('Style','pushbutton',
    'Units','normal i zed', ...
    'Position',[.5 . 5 . 2 . 1], ...
    'String','click here');
```

creates a pushbutton in the center of a figure window and returns a handle to the new object. But, so far, clicking on the button does nothing. The statement

```
s = 'set(b,''Position'',[.8*rand . 9*rand .2.1])';
```

creates a string containing a command that alters the pushbutton's position. Repeated execution of
eval(s)
moves the button to random positions. Finally,

```
set(b,'Cal|back',s)
```

installss as the button's call back action, so every time you click on the button, it moves to a new position.

Graphical User Interface Design Tools

MATLAB includes a set of layout tools that simplify the process of creating graphical user interfaces (GUIs). These tools include:

- Layout Editor - add and arrange objects in the figure window.
- Alignment Tool - align objects with respect to each other.
- Property Inspector - inspect and set property values.
- Object Browser - observe a hierarchical list of the Handle Graphics objects in the current MATLAB session.
- Menu Editor - create window menus and context menus.

Access these tools from the Layout E ditor. To start the Layout Editor, use the guide command. F or example,

[^2]displays an empty layout.
To load an existing GUI for editing, type (the . fi g is not required) guide mygui.fig
or use Open... from the File menu on the Layout Editor.

For More Information See "Creating Graphical User Interfaces" for more information.

Animations

MATLAB provides two ways of generating moving, animated graphics:

- Continually erase and then redraw the objects on the screen, making incremental changes with each redraw.
- Save a number of different pictures and then play them back as a movie.

Erase Mode Method

Using the Er aseMode property is appropriate for long sequences of simple plots where the change from frame to frame is minimal. Here is an example showing simulated Brownian motion. Specify a number of points, such as

```
n = 20
```

and a temperature or velocity, such as

```
s = . 02
```

The best values for these two parameters depend upon the speed of your particular computer. Generaten random points with (x, y) coordinates between $-1 / 2$ and $+1 / 2$.

```
x = rand(n, 1)-0.5;
y = rand(n, 1)-0.5;
```

Plot the points in a square with sides at -1 and +1 . Save the handle for the vector of points and set its Er aseMode to xor. This tells the MATLAB graphics system not to redraw the entire plot when the coordinates of one point are changed, but to restore the background color in the vicinity of the point using an "exclusive or" operation.

```
h = plot(x,y,',');
axis([-1 1 - 1 1])
axis square
grid off
set(h,'EraseMode','xor',''MarkerSize',18)
```

Now begin the animation. Here is an infinite while loop, which you can eventually exit by typing Ctrl+c. Each time through the loop, add a small amount of normally distributed random noise to the coordinates of the points.

Then, instead of creating an entirely new plot, simply change the XDat a and YDat a properties of the original plot.

```
while 1
    drawnow
    x = x + s*randn(n,1);
    y = y + s*randn(n, 1);
    set(h,'XData',x,'YData',y)
end
```

How long does it take for one of the points to get outside of the square? How long before all of the points are outside the square?

Creating Movies

If you increase the number of points in the Brownian motion example to somethingliken $=300$ and $s=.02$, themotion is nolonger very fluid; it takes too much time to draw each time step. It becomes more effective to save a predetermined number of frames as bitmaps and to play them back as a movie.

First, decide on the number of frames, say

```
nframes = 50;
```

Next, set up the first plot as before, except using the default Er a s e Mode (normal).

```
x = rand(n,1)-0.5;
y = rand(n,1)-0.5;
h = plot(x,y,'.');
set(h,'MarkerSize',18);
axis([-1 1 - 1 1])
axis square
grid off
```

Generate the movie and use get fr a me to capture each frame.

```
for k = 1:nframes
        x = x + s*randn(n,1);
        y = y + s*randn(n,1);
        set(h,'XData', x,'YData',y)
        M(k) = getframe;
end
```

Finally, play the movie 30 times.

```
movie(M, 30)
```

5 graphics

Programming with MATLAB

Flow Control 6-2
Other Data Structures 6-7
Scripts and Functions 6-17
Demonstration Programs Included with MATLAB 6-27

Flow Control

MATLAB has several flow control constructs:

- if statements
- switch statements
- for loops
- while loops
- continue statements
- break statements

For More Information See "Programming and Data Types" in Help for a complete discussion about programming in MATLAB.

if

The if statement evaluates a logical expression and executes a group of statements when the expression is true. The optional el seif and el se keywords provide for the execution of alternate groups of statements. An end keyword, which matches the if , terminates the last group of statements. The groups of statements are delineated by the four keywords - no braces or brackets are involved.

MATLAB's algorithm for generating a magic square of order n involves three different cases: when n is odd, when n is even but not divisible by 4 , or when n is divisible by 4 . This is described by

```
if rem(n, 2) ~= 0
    M=odd_magic(n)
elseif rem(n,4) ~= 0
    M= single_even_magic(n)
else
    M = double_even_magic(n)
end
```

In this example, the three cases are mutually exclusive, but if they weren't, the first true condition would be executed.

It is important to understand how relational operators and if statements work with matrices. When you want to check for equality between two variables, you might use

```
if A == B,
```

This is legal MATLAB code, and does what you expect when A and B arescalars. But when A and B are matrices, $A==B$ does not test if they are equal, it tests where they are equal; the result is another matrix of 0's and 1's showing element-by-element equality. In fact, if A and B are not the same size, then $A==B$ is an error.

The proper way to check for equality between two variables is to use the i sequal function,

```
if isequal(A,B),
```

Here is another example to emphasize this point. If A and B are scalars, the following program will never reach the unexpected situation. But for most pairs of matrices, including our magic squares with interchanged columns, none of the matrix conditions A > B, A < B or A == B is true for all elements and so the el se clause is executed.

```
if A > B
    'greater'
elseif A < B
    '|ess'
elseif A == B
    'equal'
else
    error('Unexpected situation')
end
```

Several functions are hel pful for reducing the results of matrix comparisons to scalar conditions for use with if, including

```
i sequal
i sempty
al|
any
```


switch and case

Thes witch statement executes groups of statements based on the value of a variable or expression. The keywords case and ot her wi se delineate the groups. Only the first matching case is executed. There must always be an end to match theswitch.

The logic of the magic squares al gorithm can also be described by

```
switch (rem(n,4)==0)+(rem(n, 2)==0)
    case 0
        M = odd_magic(n)
    case 1
        M = single_even_magic(n)
    case 2
        M = double_even_magic(n)
    otherwise
        error('This is impossible')
end
```

Note Unlike the C languageswitch statement, MATLAB's switch does not fall through. If the first case statement is true, the other case statements do not execute. So, break statements are not required.

for

The f or loop repeats a group of statements a fixed, predetermined number of times. A matching end delineates the statements.

```
for n = 3:32
    r(n) = rank(magic(n));
end
r
```

The semicol on terminating the inner statement suppresses repeated printing, and the r after the loop displays the final result.

It is a good idea to indent the loops for readability, especially when they are nested.

```
for i = 1:m
    for j = 1:n
        H(i, j) = 1/(i+j);
    end
end
```


while

The whil e loop repeats a group of statements an indefinite number of times under control of a logical condition. A matching end delineates the statements.

Here is a complete program, illustrating while, if, else, and end, that uses interval bisection to find a zero of a polynomial.

```
a = 0; fa = .lnf;
b = 3; fb = | nf;
while b-a > eps*b
    x = (a+b)/2;
    fx = x^3-2*x-5;
    if sign(fx) == sign(fa)
            a = x; fa = fx;
        else
            b = x; fb = fx;
    end
end
x
```

The result is a root of the polynomial $x^{3}-2 x-5$, namely

```
x =
    2.09455148154233
```

The cautions invol ving matrix comparisons that are discussed in the section on the if statement also apply to the whil e statement.

continue

Thecontinue statement passes control to the next iteration of thef or or while loop in which it appears, skipping any remaining statements in the body of the
loop. In nested loops, cont inue passes control to the next iteration of the or or whil e loop enclosing it.

The example below shows a cont inue loop that counts the lines of code in the file, magic. m, skipping all blank lines and comments. A cont inue statement is used to advance to the next line in magic. m without incrementing the count whenever a blank line or comment line is encountered.

```
fid= fopen('magic.m','r');
count = 0;
while ~feof(fid)
    line = fgetl(fid);
    if isempty(|ine)| strncmp(|ine,' %',1)
        continue
    end
    count = count + 1;
end
disp(sprintf('%d lines',count));
```


break

Thebreak statement lets you exit early from af or or while loop. In nested loops, break exits from the innermost loop only.

Here is an improvement on the example from the previous section. Why is this use of break a good idea?

```
a = 0; fa = .lnf;
b = 3; fb = | nf;
while b-a > eps*b
    x = (a+b)/2;
    fx = x^3-2*x-5;
    if fx == 0
        break
    elseif sign(fx) == sign(fa)
        a = x; fa = fx;
    else
        b = x; fb = fx;
    end
end
x
```


Other Data Structures

This section introduces you to some other data structures in MATLAB, including:

- Multidimensional arrays
- Cell arrays
- Characters and text
- Structures

For More Information For a complete discussion of MATLAB's data structures, see "Programming and Data Types" in Help.

Multidimensional Arrays

Multidimensional arrays in MATLAB are arrays with more than two subscripts. They can be created by callingzeros, ones, rand, or randn with more than two arguments. F or example,

```
R = randn(3,4,5);
```

creates a 3-by-4-by-5 array with a total of $3 \times 4 \times 5=60$ normally distributed random elements.

A three-dimensional array might represent three-dimensional physical data, say the temperature in a room, sampled on a rectangular grid. Or, it might represent a sequence of matrices, $A^{(k)}$, or samples of a time-dependent matrix, A(t). In these latter cases, the (i, j)th element of the kth matrix, or the t_{k} th matrix, is denoted by $A(i, j, k)$.

MATLAB's and Dürer's versions of the magic square of order 4 differ by an interchange of two columns. Many different magic squares can be generated by interchanging columns. The statement

```
p = perms(1:4);
```

generates the $4!=24$ permutations of $1: 4$. The k th permutation is the row vector, p(k, :). Then

```
A = magic(4);
M = zeros(4,4,24);
for k = 1:24
    M(:,:,k) = A(:,p(k,:));
end
```

stores the sequence of 24 magic squares in a three-dimensional array, M. The size of M is

```
size(M)
ans =
    4 4 24
```


It turns out that the third matrix in the sequence is Dürer's.

M (: , : 3)			
ans $=$			
16	3	2	13
5	10	11	8
9	6	7	12
4	15	14	1

The statement
sum($M, d)$
computes sums by varying the d th subscript. So

```
sum(M,1)
```

is a 1-by-4-by-24 array containing 24 copies of the row vector

```
34 34 34
34
```

and
sum(M, 2)
is a 4-by-1-by-24 array containing 24 copies of the column vector
34
34
34
34
Finally,
$S=\operatorname{sum}(M, 3)$
adds the 24 matrices in the sequence. The result has size4-by-4-by-1, so it looks like a 4-by-4 array.
$S=$
$204204204 \quad 204$
$204 \quad 204 \quad 204 \quad 204$
$204 \quad 204 \quad 204 \quad 204$
$204 \quad 204 \quad 204 \quad 204$

Cell Arrays

Cell arrays in MATLAB are multidimensional arrays whose elements are copies of other arrays. A cell array of empty matrices can be created with the cell function. But, more often, cell arrays are created by enclosing a miscellaneous collection of things in curly braces, $\}$. The curly braces are also used with subscripts to access the contents of various cells. For example,

```
C={A sum(A) prod(prod(A))}
```

produces a 1-by-3 cell array. The three cells contain the magic square, the row vector of column sums, and the product of all its elements. When C is displayed, you see
$C=$
[4x4 double] [1x4 double] [20922789888000]
This is because the first two cells are too large to print in this limited space, but the third cell contains only a single number, 16 !, so there is room to print it.
Here are two important points to remember. First, to retrieve the contents of one of the cells, use subscripts in curly braces. F or example, $C\{1\}$ retrieves the magic square and $c\{3\}$ is 16!. Second, cell arrays contain copies of other arrays, not pointers to those arrays. If you subsequently change A, nothing happens to C.

Three-dimensional arrays can be used to store a sequence of matrices of the same size. Cell arrays can be used to store a sequence of matrices of different sizes. For example,

```
M = cell(8,1);
for n = 1:8
        M{n} = magic(n);
end
M
```

produces a sequence of magic squares of different order.

```
M =
    [ % 1]
    [ 2x2 double]
    [ 3\times3 double]
    [ 4x4 double]
    [ 5x5 double]
    [ 6\times6 double]
    [ 7x7 double]
    [ 8\times8 double]
```


You can retrieve our old friend with
M $\{4\}$

Characters and Text

Enter text into MATLAB using single quotes. For example,

```
s = 'Hello'
```

The result is not the same kind of numeric matrix or array we have been dealing with up to now. It is a 1-by-5 character array.

Internally, the characters are stored as numbers, but not in floating-point format. The statement

```
a = double(s)
```

converts the character array to a numeric matrix containing floating-point representations of the ASCII codes for each character. The result is
a =
$\begin{array}{lllll}72 & 101 & 108 & 108 & 111\end{array}$
The statement

```
s = char(a)
```

reverses the conversion.
Converting numbers to characters makes it possible to investigate the various fonts available on your computer. The printable characters in the basic ASCII character set are represented by the integers 32:127. (The integers less than 32 represent nonprintable control characters.) These integers are arranged in an appropriate 6-by-16 array with

```
F=reshape( 32:127,16,6)';
```

The printable characters in the extended ASCII character set are represented by $\mathrm{F}+128$. When these integers are interpreted as characters, the result depends on the font currently being used. Type the statements

```
char(F)
char(F+128)
```

and then vary the font being used for the MATLAB Command Window. Select Preferences from the File menu. Be sure to try the Symbol and Wingdings fonts, if you have them on your computer. Here is one example of the kind of output you might obtain.

```
    !" #$ %&' ( ) * +, -. |
0123456789:; <=>?
@ABCDEFGHIJKLMNO
PQRSTUVWXYZ[\]^_
`abcdefghijk|mno
pqrstuvwxyz{|}~
\dagger \£§•|B®OTM'"
i i f f «»...ÀÃÕGœ
- -""'' \ddot{y}Y/\mp@code{q<)fifl}
\ddagger\cdot, „%ÂÊÁEZE\I İİ İÓO
    OUÚÛÜ,
```

Concatenation with square brackets joins text variables together into larger strings. The statement

```
h = [s, ' world']
```

joins the strings horizontally and produces

```
h =
    Hello world
```

The statement

```
v = [s; 'world']
```

joins the strings vertically and produces

```
v =
    Hello
    world
```

Notethat a blank has to be inserted before the ' w ' in h and that both words in v have to have the same length. The resulting arrays are both character arrays; h is 1-by- 11 and v is 2-by-5.

Tomanipulatea body of text containing lines of different lengths, you havetwo choices - a padded character array or a cell array of strings. The char function accepts any number of lines, adds blanks to each line to make them all the same length, and forms a character array with each linein a separate row. F or example,

```
S = char('A','rolling','stone','gathers','momentum.')
```

produces a 5-by-9 character array.

```
S =
A
rolling
stone
gathers
momentum.
```

There are enough blanks in each of the first four rows of S to make all the rows the same length. Alternatively, you can store the text in a cell array. For example,

```
C = {'A';'rolling';'stone';'gathers';'momentum.'}
```

is a 5-by-1 cell array.

```
C =
    ' A'
    'rolling'
    'stone'
    'gathers'
    ' mo ment um.
```

You can convert a padded character array to a cell array of strings with

```
C = cellstr(S)
```

and reverse the process with

```
S = char(C)
```


Structures

Structures are multidimensional MATLAB arrays with elements accessed by textual field designators. F or example,

```
S.name = 'Ed PIum';
S.score = 83;
S.grade = ' B+'
```

creates a scalar structure with three fields.

```
S =
    name: 'Ed PIum'
    score: 83
    grade: ' B+'
```

Like everything else in MATLAB, structures are arrays, so you can insert additional elements. In this case, each element of the array is a structure with several fields. The fields can be added one at a time,

```
S(2).name = 'Toni Miller';
S(2).score = 91;
S(2).grade = 'A.'';
```

or, an entire element can be added with a single statement.

```
S(3) = struct('name','Jerry Garcia',...
    'score',}70,'grade','('
```

Now the structure is large enough that only a summary is printed.

```
S =
1x3 struct array with fields:
    name
    score
    grade
```

There are several ways to reassemble the various fields into other MATLAB arrays. They are all based on the notation of a comma separated list. If you type
S.score
it is the same as typing

```
S(1).score, S(2).score, S(3).score
```

This is a comma separated list. Without any other punctuation, it is not very useful. It assigns the three scores, one at a time, to the default variableans and dutifully prints out the result of each assignment. But when you enclose the expression in square brackets,
[S.score]
it is the same as

```
[S(1).score, S(2).score, S(3).score]
```

which produces a numeric row vector containing all of the scores. ans $=$
$8391 \quad 70$
Similarly, typing
S. name
just assigns the names, one at time, to ans. But enclosing the expression in curly braces, \{S. name \}
creates a 1-by-3 cell array containing the three names.

```
ans =
    'Ed PIum' 'Toni Miller' 'Jerry Garcia'
```

And

```
char(S.name)
```

calls the char function with three arguments to create a character array from thename fields,
ans =
Ed PIum
Toni Miller
Jerry Garcia

Scripts and Functions

MATLAB is a powerful programming language as well as an interactive computational environment. Files that contain code in the MATLAB Ianguage are called M -files. You create M -files using a text editor, then use them as you would any other MATLAB function or command.

There are two kinds of M-files:

- Scripts, which do not accept input arguments or return output arguments. They operate on data in the workspace.
- Functions, which can accept input arguments and return output arguments. Internal variables are local to the function.

If you're a new MATLAB programmer, just create the M-files that you want to try out in the current directory. As you devel op more of your own M-files, you will want to organize them into other directories and personal tool boxes that you can add to MATLAB's search path.

If you duplicatefunction names, MATLAB executes the one that occurs first in the search path.

To view the contents of an M-file, for example, my function. m, use

```
type myfunction
```


Scripts

When you invoke a script, MATLAB simply executes the commands found in the file. Scripts can operate on existing data in the workspace, or they can create new data on which to operate. Although scripts do not return output arguments, any variables that they create remain in the workspace, to be used in subsequent computations. In addition, scripts can produce graphical output using functions like plot.

For example, create a file called ma gi crank. m that contains these MATLAB commands.

```
% I nvestigate the rank of magic squares
r = zeros(1,32);
for n = 3:32
    r(n)=rank(magic(n));
end
```

```
r
bar(r)
```

Typing the statement
magicrank
causes MATLAB to execute the commands, compute the rank of the first 30 magic squares, and plot a bar graph of the result. After execution of the file is complete, the variables n and r remain in the workspace.

Functions

Functions are M-files that can accept input arguments and return output arguments. The name of the M-file and of the function should be the same. Functions operate on variables within their own workspace, separate from the workspace you access at the MATLAB command prompt.
A good example is provided by rank. The M-filerank. mis available in the directory

You can see the file with

```
type rank
```

Here is the file.

```
function r = rank(A,tol)
% RANK Matrix rank.
% RANK(A) provides an estimate of the number of linearly
% independent rows or columns of a matrix A.
% RANK(A,tol) is the number of singular values of A
% that are larger than tol.
% RANK(A) uses the default tol = max(size(A)) * norm(A) * eps.
s = svd(A);
if nargin==1
    tol = max(size(A)') * max(s) * eps;
end
r = sum(s > tol);
```

Thefirst line of a function M-filestarts with the keywordf unction. It gives the function name and order of arguments. In this case, there are up to two input arguments and one output argument.

The next several lines, up to the first blank or executable line, are comment lines that provide the help text. These lines are printed when you type

```
help rank
```

Thefirst line of the help text is the H 1 line, which MATLAB displays when you use thel ookfor command or request hel pon a directory.
The rest of the file is the executable MATLAB code defining the function. The variables introduced in the body of the function, as well as the variables on the first line, r, A and $t o l$, are all local to the function; they are separate from any variables in the MATLAB workspace.

This exampleillustrates one aspect of MATLAB functions that is not ordinarily found in other programming languages - a variable number of arguments. The rank function can be used in several different ways.

```
rank(A)
r = rank(A)
r=rank(A,1.e-6)
```

Many M-files work this way. If no output argument is supplied, the result is stored in ans. If the second input argument is not supplied, the function computes a default value. Within the body of the function, two quantities named nargin andnargout are available which tell you the number of input and output arguments involved in each particular use of the function. Ther ank function uses nargin, but does not need to usenargout .

Global Variables

If you want more than one function to share a single copy of a variable, simply declare the variable as global in all the functions. Do the same thing at the command line if you want the base workspace to access the variable. The global dedaration must occur before the variable is actually used in a function. Although it is not required, using capital letters for the names of global variables helps distinguish them from other variables. For example, create an M-file called falling.m.

```
function h = falling(t)
global GRAVITY
h = 1/2*GRAVITY*t. ^2;
```

Then interactively enter the statements

```
global GRAVITY
GRAVITY = 32;
y = falling((0:.1:5)');
```

The two global statements make the value assigned to GRAVI TY at the command prompt available inside the function. You can then modify GRAVI TY interactively and obtain new solutions without editing any files.

Passing String Arguments to Functions

You can write MATLAB functions that accept string arguments without the parentheses and quotes. That is, MATLAB interprets

```
    foo a b c
```

as

```
foo('a','b','c')
```

However, when using the unquoted form, MATLAB cannot return output arguments. For example,

```
legend apples oranges
```

creates a legend on a plot using thestringsapples andoranges aslabels. If you want thel egend command to return its output arguments, then you must use the quoted form.

```
[legh,objh] = |egend('apples','oranges');
```

In addition, you cannot use the unquoted form if any of the arguments are not strings.

Constructing String Arguments in Code

The quoted form enables you to construct string arguments within the code. The following example processes multiple data files, August 1. dat , August 2. dat, and so on. It uses the function int 2 str, which converts an integer to a character, to build the filename.

```
for d = 1:31
    s = ['August' int2str(d) '.dat'];
    load(s)
    % Code to process the contents of the d-th file
end
```


A Cautionary Note

While the unquoted syntax is convenient, it can be used incorrectly without causing MATLAB to generate an error. F or example, given a matrix A,
$A=$

0	-6	-1

$\begin{array}{lll}6 & 2 & -16\end{array}$
$\begin{array}{lll}-5 & 20 & -10\end{array}$
The eig command returns the eigenvalues of A .
eig (A)
ans $=$
ans =
-3. 0710
-2. $4645+17.6008 \mathrm{i}$
-2.4645-17.6008i

The following statement is not allowed because A is not a string, however MATLAB does not generate an error.

```
eig A
ans=
65
```

MATLAB actually takes the eigenvalues of ASCII numeric equivalent of the letter A (which is the number 65).

The eval Function

Theeval function works with text variables to implement a powerful text macro facility. The expression or statement
eval(s)
uses the MATLAB interpreter to evaluate the expression or execute the statement contained in the text string s.

The example of the previous section could also be done with the following code, although this would be somewhat less efficient because it involves the full interpreter, not just a function call.

```
for d = 1:31
    s = ['|oad August' int2str(d) '.dat'];
    eval(s)
    % Process the contents of the d-th file
end
```


Vectorization

To obtain the most speed out of MATLAB, it's important to vectorize the algorithms in your M -files. Whereother programminglanguages might usef or or DO loops, MATLAB can use vector or matrix operations. A simple example involves creating a table of logarithms.

```
x = . 01;
for k = 1:1001
    y(k)= log10(x);
    x = x +.01;
end
```

A vectorized version of the same code is

```
x = .01:.01:10;
y = log10(x);
```

F or more complicated code, vectorization options are not always so obvious. When speed is important, however, you should always look for ways to vectorize your al gorithms.

Preallocation

If you can't vectorize a piece of code, you can make your for loops go faster by preallocating any vectors or arrays in which output results are stored. For example, this code uses the function zer os to preallocate the vector created in the f or loop. This makes the for loop execute significantly faster.

```
r = zeros(32,1);
for n = 1:32
    r(n) = rank(magic(n));
end
```

Without the preallocation in the previous example, the MATLAB interpreter enlarges ther vector by one element each time through the loop. Vector preallocation eliminates this step and results in faster execution.

Function Handles

You can create a handle to any MATLAB function and then use that handle as a means of referencing the function. A function handleis typically passed in an argument list to other functions, which can then execute, or evaluate, the function using the handle.
Construct a function handle in MATLAB using the at sign, @, before the function name. The following example creates a function handle for the s in function and assigns it to the variablef handle.

```
fhandle = @sin;
```

Evaluate a function handle using the MATLAB feval function. The function plot_f handle, shown below, receives a function handle and data, and then performs an evaluation of the function handle on that data using f eval.

```
function x = plot_fhandle(fhandle, data)
plot(data, feval(fhandle, data))
```

When you call pl ot f handle with a handle to the sin function and the argument shown below, the resulting evaluation produces a sine wave plot.

```
plot_fhandle(@sin, - pi:0.01: pi)
```


Function Functions

A class of functions, called "function functions," works with nonlinear functions of a scalar variable. That is, one function works on another function. The function functions include:

- Zero finding
- Optimization
- Quadrature
- Ordinary differential equations

MATLAB represents the nonlinear function by a function M-file. F or example, here is a simplified version of the function humps from the mat I ab/demos directory.

```
function y = humps(x)
y = 1.l((x-.3).^2 + .01) + 1.l((x-.9).^2 +.04) - 6;
```

Evaluate this function at a set of points in the interval $0 \leq x \leq 1$ with

```
x = 0:.002:1;
y = humps(x);
```

Then plot the function with

```
plot(x,y)
```


The graph shows that the function has a local minimum near $x=0.6$. The function f mins earch finds the minimizer, the value of x where the function takes on this minimum. Thefirst argument tof minsearch is a function handle to the function being minimized and the second argument is a rough guess at the location of the minimum.

```
p = fminsearch(@humps,. 5)
p =
    0.6370
```

To evaluate the function at the minimizer,

```
humps(p)
ans =
    11.2528
```

Numerical analysts use the terms quadrature and integration to distinguish between numerical approximation of definite integrals and numerical integration of ordinary differential equations. MATLAB's quadrature routines arequad and quadl. The statement

Q = quadl (@humps, 0, 1)
computes the area under the curve in the graph and produces

```
Q =
29.8583
```

Finally, the graph shows that the function is never zero on this interval. So, if you search for a zero with

```
z = fzero(@humps,.5)
```

you will find one outside of the interval

$$
z=.
$$

Demonstration Programs Included with MATLAB

MATLAB includes many demonstration programs that highlight various features and functions. For a complete list of the demos, at the command prompt type
help demos
To view a specific file, for example, a i r foil, type
edit airfoil
To run a demonstration, type the filename at the command prompt. For example, to run the airfoil demonstration, type

```
airfoil
```

Note Many of the demonstrations use multiple windows and require you to press a key in the MATLAB Command Window to continue through the demonstration.

The following tables list some of the current demonstration programs that are available, organized into these categories:

- MATLAB Matrix Demonstration Programs
- MATLAB Numeric Demonstration Programs
- MATLAB Visualization Demonstration Programs
- MATLAB Language Demonstration Programs
- MATLAB Differential Equation Programs
- MATLAB Gallery Demonstration Programs
- MATLAB Game Demonstration Programs
- MATLAB Miscellaneous Demonstration Programs
- MATLAB Helper Functions Demonstration Programs

MATLAB Matrix Demonstration Programs	
airfoil	Graphical demonstration of sparse matrix from NASA airfoil.
buckydem	Connectivity graph of the Buckminster Fuller geodesic dome.
delsqdemo	Finite difference Laplacian on various domains.
eigmovie	Symmetric eigenvalue movie.
eigshow	Graphical demonstration of matrix eigenvalues.
intro	Introduction to basic matrix operations in MATLAB.
inverter	Demonstration of the inversion of a large matrix.
matmanip	Introduction to matrix manipulation.
rrefmovie	Computation of reduced row echelon form.
sepdemo	Separators for a finite element mesh.
sparsity	Demonstration of the effect of sparsity orderings.
svdshow	Graphical demonstration of matrix singular values.

MATLAB Numeric Demonstration Programs

bench	MATLAB benchmark.
census	Prediction of the U.S. population in the year 2000.
e2pi	Two-dimensional, visual solution to the problem "Which is greater, e^{π} or $\pi^{e} ?$ "
fftdemo	Use of theFFT function for spectral analysis.
fitdemo	Nonlinear curvefit with simplex algorithm.
fplotdemo	Demonstration of plotting a function.

MATLAB Numeric Demonstration Programs (Continued)	
funfuns	Demonstration of functions operating on other functions.
I ot kademo	Example of ordinary differential equation solution.
quaddemo	Adaptive quadrature.
qhul I demo	Tessellation and interpolation of scattered data.
quake	Loma Prieta earthquake.
spline2d	Demonstration of ginput and spline in two dimensions.
sunspots	Demonstration of the fast Fourier transform (FFT) function in MATLAB used to analyze the variations in sunspot activity.
zerodemo	Zerofinding with fzero.

MATLAB Visualization Demonstration Programs

colormenu	Demonstration of adding a col ormap to the current figure.
cplxdemo	Maps of functions of a complex variable.
earthmap	Graphical demonstrations of earth's topography.
graf2d	Two-dimensional XY plots in MATLAB.
graf2d2	Three-dimensional XYZ plots in MATLAB.
grafcplx	Demonstration of complex function plots in MATLAB.
i magedemo	Demonstration of MATLAB's image capability.
i mageext	Demonstration of changing and rotating image colormaps.

MATLAB Visualization Demonstration Programs (Continued)	
I orenz	Graphical demonstration of the orbit around the Lorenz chaotic attractor.
penny	Several views of the penny data.
vibes	Vibrating L-shaped membrane movie.
xfourier	Graphical demonstration of Fourier series expansion.
xpklein	Klein bottle demo.
xpsound	Demonstration of MATLAB's sound capability.

MATLAB Language Demonstration Programs

graf 3d	Demonstration of Handle Graphics for surface plots.
hndlaxis	Demonstration of Handle Graphics for axes.
hndlgraf	Demonstration of Handle Graphics for line plots.
xplang	Introduction to the MATLAB language.

MATLAB Differential Equation Programs

ampldae	Stiff DAE from an electrical circuit.
ballode	Equations of motion for a bouncing ball used by BALLDEMO.
brussode	Stiff problem, modelling a chemical reaction (Brusselator).
burgersode	Burger's equation solved using a moving mesh technique.
femlode	Stiff problem with a time-dependent mass matrix.
fem2ode	Stiff problem with a time-independent mass matrix.

MATLAB Differential Equation Programs (Continued)	
hb1dae	Stiff DAE from a conservation law.
hblode	Stiff problem 1 of Hindmarsh and Byrne.
hb3ode	Stiff problem 3 of Hindmarsh and Byrne.
mat 4bvp	Find the fourth eigenvalue of the Mathieu's equation.
odedemo	Demonstration of the ODE suite integrators.
odeexampl es	Browse the MATLAB ODE/DAE/BVP/PDE examples.
orbitode	Restricted 3 body problem used by 0RBI TDEMO.
pdex1	Example 1 for PDEPE.
pdex2	Example 2 for PDEPE.
pdex3	Example 3 for PDEPE.
pdex4	Example 4 for PDEPE.
rigidode	Euler equations of a rigid body without external forces.
shockbvp	The solution has a shock layer near $x=0$.
twobvp	BVP that has exactly two solutions.
vdpode	Parameterizable van der Pol equation (stiff for large μ).

MATLAB Gallery Demonstration Programs

cruller	Graphical demonstration of a cruller.
klein1	Graphical demonstration of a Klein bottle.
knot	Tube surrounding a three-dimensional knot.
logo	Graphical demonstration of the MATLAB L-shaped membrane logo.

MATLAB Gallery Demonstration Programs (Continued)	
modes	Graphical demonstration of 12 modes of the L-shaped membrane.
quivdemo	Graphical demonstration of the quiver function.
spharm2	Graphical demonstration of spherical surface harmonic.
tori 4	Graphical demonstration of four-linked, unknotted tori.

MATLAB Game Demonstration Programs

fifteen	Sliding puzzle.
Iife	Conway's Game of Life.
soma	Soma cube.
xpbombs	Minesweeper game.

MATLAB Miscellaneous Demonstration Programs

chaingui	Matrix chain multiplication optimization.
codec	Alphabet transposition coder/decoder.
crulspin	Spinning cruller movie.
Iogospin	Movie of the MathWorks logo spinning.
makevase	Demonstration of a surface of revolution.
quatdemo	Quaternion rotation.
spinner	Colorful lines spinning through space.
travel	Traveling salesman problem.
truss	Animation of a bending bridge truss.

MATLAB Miscellaneous Demonstration Programs (Continued)

wrldtrv	Great circle flight routes around the globe.
xphide	Visual perception of objects in motion.
xpquad	Superquadrics plotting demonstration.

MATLAB Helper Functions Demonstration Programs

bucky	Graph of the Buckminster Fuller geodesic dome.
cmdInbgn	Set up for command line demos.
cmdInend	Clean up after command line demos.
cmdInwin	Demo gateway routine for running command line demos.
finddemo	Command that finds available demos for individual toolboxes.
helpfun	Utility function for displaying help text conveniently.
membrane	The MathWorks logo.
peaks	Sample function of two variables.
pItmat	Command that displays a matrix in a figure window.

Getting More Information

The MathWorks Web site (www. mathworks com) contains numerous M-files that have been written by users and MathWorks staff. These are accessible by selecting Downloads. Also, Technical Notes, which is accessible from our Technical Support Web site (www. mathworks. com/support), contains numerous examples on graphics, mathematics, API, Simulink, and others.

Symbolic Math Tool box

Introduction . 7-2
Getting Help . 7-4
Getting Started 7-5
Calculus . 7-16
Simplifications and Substitutions 7-43
Variable-Precision Arithmetic 7-58
Linear Algebra 7-63
Solving Equations 7-86

Introduction

The Symbolic Math Tool box incorporates symbolic computation into MATLAB's numeric environment. This tool box supplements MATLAB's numeric and graphical facilities with several other types of mathematical computation.

Facility	Covers
Calculus	Differentiation, integration, limits, summation, and Taylor series
Linear Algebra	Inverses, determinants, eigenvalues, singular value decomposition, and canonical forms of symbolic matrices
Simplification	Methods of simplifying algebraic expressions
Solution of Equations	Symbolic and numerical solutions to algebraic and differential equations
Transforms	Fourier, Laplace, z-transform, and corresponding inverse transforms
Variable-Precision	Numerical evaluation of mathematical expressions to any specified accuracy
Arithmetic	

The computational engine underlying the tool boxes is the kernel of Maple, a system devel oped primarily at the University of Waterloo, Canada, and, more recently, at the Eidgenössiche Technische Hochschule, Zürich, Switzerland. Maple is marketed and supported by Waterloo Maple, Inc.

This version of the Symbolic M ath Tool box is designed to work with MATLAB 6 and MapleV Release 5.

The Symbolic Math Tool box is a collection of morethan one-hundred MATLAB functions that provide access to the M aple kernel using a syntax and style that is a natural extension of the MATLAB language. The tool box also allows you to access functions in Maple's linear algebra package. With this tool box, you can write your own M-files to access Maple functions and the M aple workspace.

The following sections of this tutorial provide explanation and examples on how to use the tool box.

Section	Covers
"Getting Help"	How to get online help for Symbolic Math Tool box functions
"Getting Started"	Basic symbolic math operations
"Calculus"	How to differentiate and integrate symbolic expressions
"Simplifications and Substitutions"	How to simplify and substitute values into expressions
"Variable-Precision	How to control the precision of computations
Arithmetic"	Examples using the tool box functions
"Sinear Algebra"	How to solve symbolic equations Equations"

For More Information You can access complete reference information for the Symbolic Math Toolbox functions from Help. Also, you can print the PDF version of the complete Symbolic Math Tool box User's Guide (tutorial and reference information) from the Symbolic M ath Tool box roadmap in Help.

Getting Help

There are several ways to find information on using Symbolic Math Tool box functions. One, of course, is to read this chapter! Another is to use online Help, which contains tutorials and reference information for all the functions. Y ou can also use MATLAB's command line help system. Generally, you can obtain help on MATLAB functions simply by typing

```
help function
```

wheref unction is the name of the MATLAB function for which you need help. This is not sufficient, however, for some Symbolic M ath Tool box functions. The reason? The Symbolic M ath Tool box "overloads" many of MATLAB's numeric functions. That is, it provides symbolic-specific implementations of the functions, using the same function name. To obtain help for the symbolic version of an overloaded function, type

```
help sym/function
```

wheref unction is the overloaded function's name. F or example, to obtain help on the symbolic version of the overloaded function, diff, type

```
help sym/diff
```

To obtain information on the numeric version, on the other hand, simply type

```
help diff
```

How can you tell whether a function is overloaded? The help for the numeric version tells you so. For example, the help for the diff function contains the section

```
Overloaded methods
    help char/diff.m
    help sym/diff.m
```

This tells you that there are two other diff commands that operate on expressions of class char and class sym, respectively. See the next section for information on class sym. For more information on overloaded commands, see "Overloading Operators and Functions" in Using MATLAB, which is accessible from Help.

Getting Started

This section describes how to create and use symbolic objects. It al so describes the default symbolic variable. If you are familiar with version 1 of the Symbolic Math Toolbox, please note that version 2 uses substantially different and simpler syntax.

To get a quick onlineintroduction to the Symbolic Math Tool box, type de mos at the MATLAB command line. MATLAB displays the MATLAB Demos dialog box. Select Symbolic Math (in the left list box) and then Introduction (in the right list box).

Symbolic Objects

The Symbolic Math Tool box defines a new MATLAB data type called a symbolic object or sym (for more information on data types, the MATLAB topic "Programming and Data Types" in Using MATLAB). Internally, a symbolic object is a data structure that stores a string representation of the symbol. The Symbolic Math Tool box uses symbolic objects to represent symbolic variables, expressions, and matrices.

Creating Symbolic Variables and Ex pressions

Thes y m command lets you construct symbolic variables and expressions. For example, the commands

```
x = sym('x')
a = sym('alpha')
```

create a symbolic variable x that prints as x and a symbolic variablea that prints asalpha.

Suppose you want to use a symbolic variable to represent the golden ratio

$$
\rho=\frac{1+\sqrt{5}}{2}
$$

The command

```
rho = sym('(1 + sqrt(5))/2')
```

achieves this goal. Now you can perform various mathematical operations on rho. For example,
$f=r h o \wedge 2-r h o-1$
returns
$f=$
$\left(1 / 2+1 / 2 * 5^{\wedge}(1 / 2)\right)^{\wedge} 2 \cdot 3 / 2 \cdot 1 / 2 * 5 \wedge(1 / 2)$
Then
simplify(f)
returns
0
Now suppose you want to study the quadratic function $f=a x^{2}+b x+c$. The statement

```
f = sym('a*x^2 + b*x + c')
```

assigns the symbolic expression $a x^{2}+b x+c$ to the variablef. Observe that in this case, the Symbolic Math Tool box does not create variables corresponding to the terms of the expression, a, b, c, and x. To perform symbolic math
operations (e.g., integration, differentiation, substitution, etc.) on f, you need to create the variables explicitly. Y ou can do this by typing

```
    a = sym('a')
    b = sym('b')
    c = sym('c')
    x = sym('x')
```

or simply

```
syms a b c x
```

In general, you can use s y m or s y ms to create symbolic variables. We recommend you use s ms because it requires less typing.

Symbolic and Numeric Conversions

Consider the ordinary MATLAB quantity

$$
t=0.1
$$

The sym function has four options for returning a symbolic representation of the numeric value stored int. The' f ' option
sym(t,'f')
returns a symbolic floating-point representation
'1.999999999999a'*2^(-4)
The'r' option
sym(t, 'r')
returns the rational form
1/10
This is the default setting for s y m . That is, calling s y m without a second argument is the same as using sym with the 'r' option.
sym(t)
ans =
1/10

Thethird option ' e' returns the rational form of t plus the difference between the theoretical rational expression for t and its actual (machine) floating-point value in terms of eps (the floating-point relative accuracy).

```
sym(t,'e')
ans =
1/10+eps/40
```

The fourth option ' d ' returns the decimal expansion of t up to the number of significant digits specified by digits.

```
sym(t,'d')
ans=
1000000000000000000555111512312578
```

The default value of digits is 32 (hence, $\mathrm{s} \mathrm{ym}\left(\mathrm{t}, \mathrm{I}^{\prime} \mathrm{d}^{\prime}\right)$ returns a number with 32 significant digits), but if you prefer a shorter representation, use the di gits command as follows.

```
digits(7)
sym(t,'d')
ans=
1000000
```

A particularly effective use of s y m is to convert a matrix from numeric to symbolic form. The command

```
A = hilb(3)
```

generates the 3-by-3 Hilbert matrix.
$\mathrm{A}=$

1.0000	0.5000	0.3333
0.5000	0.3333	0.2500
0.3333	0.2500	0.2000

By applying sym to A

$$
A=s y m(A)
$$

you can obtain the (infinitely precise) symbolic form of the 3-by-3 Hilbert matrix.
$\mathrm{A}=$
$[1,1 / 2,1 / 3]$
$[1 / 2,1 / 3,1 / 4]$
[$1 / 3,1 / 4,1 / 5]$

Constructing Real and Complex Variables

The sym command allows you to specify the mathematical properties of symbolic variables by using the'real' option. That is, the statements

```
x = sym('x','real'); y = sym('y','real'');
```

or more efficiently

```
syms x y real
z = x + i*y
```

create symbolic variables x and y that have the added mathematical property of being real variables. Specifically this means that the expression

```
f}=\mp@subsup{x}{}{\wedge}2+\mp@subsup{y}{}{\wedge}
```

is strictly nonnegative. Hence, z is a (formal) complex variable and can be manipulated as such. Thus, the commands

```
conj(x), conj(z), expand(z*conj(z))
```

return the complex conjugates of the variables

$$
x, \quad x-i * y, \quad x^{\wedge} 2+y^{\wedge} 2
$$

The conj command is the complex conjugate operator for the tool box. If $\operatorname{conj}(x)==x$ returns 1, then x is a real variable.

To clear x of its "real" property, you must type

```
syms x unreal
```

or

$$
x=s y m\left({ }^{\prime} x^{\prime}, \text { 'unreal' }\right)
$$

The command
clear x
does not makex a nonreal variable.

Creating Abstract Functions

If you want to create an abstract (i.e., indeterminant) function $f(x)$, type

```
f = sym('f(x)')
```

Then f acts like $f(x)$ and can be manipulated by the tool box commands. To construct the first difference ratio, for example, type

```
df = (subs(f,'x','x+h') - f)/'h'
```

or
syms x h

```
df=(subs(f,x,x+h)-f)/h
```

which returns
$d f=$
(f(x+h)-f(x))/h
This application of sym is useful when computing Fourier, Laplace, and z-transforms.

Example: Creating a Symbolic Matrix

A circulant matrix has the property that each row is obtained from the previous one by cyclically permuting the entries one step forward. We create the circulant matrix A whose elements are a, b, and c, using the commands

```
syms a b c
A =[a b c; b c a;c a b]
```

which return
$A=$
$[a, b, c]$
$[b, c, a]$
$[b, a, b]$

Since A is circulant, the sum over each row and column is the same. Let's check this for the first row and second column. The command

```
    sum(A(1,:))
returns
ans =
a+b+c
The command
```

```
sum(A(1,:)) == sum(A(:,2)) % This is a logical test.
```

sum(A(1,:)) == sum(A(:,2)) % This is a logical test.
returns

```
```

ans =

```
ans =
    1
```

Now replace the $(2,3)$ entry of A with bet a and the variableb with a l pha. The commands

```
syms alpha beta;
A(2,3) = beta;
A = subs(A,b,alpha)
```

return

From this example, you can see that using symbolic objects is very similar to using regular MATLAB numeric objects.

The Default Symbolic Variable

When manipulating mathematical functions, the choice of the independent variable is often clear from context. For example, consider the expressions in the table below.

Mathematical Function	MATLAB Command
$f=x^{n}$	$f=x^{\wedge} n$
$g=\sin (a t+b)$	$g=\sin \left(a^{*} t+b\right)$
$h=J_{v}(z)$	$h=$ besselj(nu,z)

If we ask for the derivatives of these expressions, without specifying the independent variable, then by mathematical convention we obtain $f^{\prime}=n x^{n}$, $g^{\prime}=a \cos (a t+b)$, and $h^{\prime}=J v(z)(v / z)-J v+1(z)$. Let's assume that the independent variables in these three expressions are x, t, and z, respectively. The other symbols, $\mathrm{n}, \mathrm{a}, \mathrm{b}$, and v, are usually regarded as "constants" or "parameters." If, however, we wanted to differentiate the first expression with respect to n , for example, we could write

$$
\frac{d}{d n} f(x) \text { or } \frac{d}{d n} x^{n}
$$

to get $x^{n} \ln x$.
By mathematical convention, independent variables are often lower-case letters found near the end of the Latin al phabet (e.g., x, y, or z). This is the idea behind f inds y m, a utility function in the tool box used to determine default symbolic variables. Default symbolic variables are utilized by the calculus, simplification, equation-solving, and transform functions. To apply this utility to the example discussed above, type

```
syms a b n nu t x z
f = x^n; g= sin(a*t + b); h = besselj(nu,z);
```

This creates the symbolic expressions f, g, and h to match the example. To differentiate these expressions, we use diff.

```
diff(f)
returns
ans=
x^n*n/x
```

See the section "Differentiation" for a more detailed discussion of differentiation and the diff command.

Here, as above, we did not specify the variable with respect to differentiation. How did the toolbox determine that we wanted to differentiate with respect to x ? The answer is the i indsym command

```
findsym(f,1)
```

which returns
ans =
X
Similarly, findsym($\mathrm{g}, 1$) andfindsym($h, 1$) returnt andz, respectively. Here the second argument of f indsym denotes the number of symbolic variables we want to find in the symbolic object f, using the f i $n d s$ y m rule (see below). The absence of a second argument in findsym results in a list of all symbolic variables in a given symbolic expression. We see this demonstrated below. The command

```
findsym(g)
```

returns the result

```
ans =
a, b, t
```

findsym Rule The default symbolic variable in a symbolic expression is the letter that is closest to ' x ' alphabetically. If there are two equally close, the letter later in the al phabet is chosen.

Here are some examples.

Expression	Variable Returned by findsym
$x^{\wedge} n$	x
$\sin (a * t+b)$	t
besselj ($n u, z$)	z
$w^{*} y+v^{*} z$	y
exp(i*theta)	theta
$\log (\mathrm{alpha*} \times 1)$	x 1
$y *(4+3 * i)+6 * j$	y
sqrt(pi*alpha)	alpha

Creating Symbolic Math Functions

There are two ways to create functions:

- Use symbol ic expressions
- Create an M-file

Using Symbolic Expressions

The sequence of commands

```
syms x y z
r=sqrt( (x^2 + y^2 + z^^2)
t = atan(y/x)
f}=\operatorname{sin}(\mp@subsup{x}{}{*}y)/(\mp@subsup{x}{}{*}y
```

generates the symbolic expressions r, t, and f. You can use $d i f f, i n t$, $s u b s$, and other Symbolic Math Tool box functions to manipulate such expressions.

Creating an M-File

M-files permit a more general use of functions. Suppose, for example, you want to create the sinc function sin(x)/x. To do this, create an M-file in the @s ym directory.

```
function z = sinc(x)
%SINC The symbolic sinc function
% sin(x)/x. This function
% accepts a sym as the input argument.
if isequal( }x,\mathrm{ sym(0))
    z = 1;
else
    z = sin(x)/x;
end
```

You can extend such examples to functions of several variables. See the MATLAB topic "Programming and Data Types" in Using MATLAB for a more detailed discussion on object-oriented programming.

Calculus

The Symbolic Math Tool box provides functions to do the basic operations of calculus; differentiation, limits, integration, summation, and Taylor series expansion. The following sections outline these functions.

Differentiation

Let's create a symbolic expression.

```
syms a x
f = sin(a*x)
```

Then

```
diff(f)
```

differentiates f with respect to its symbolic variable (in this case x), as determined by findsym.

```
ans=
cos(a*x)*a
```

To differentiate with respect to the variable a, type
$\operatorname{diff(f,a)}$
which returns df /da
ans =
$\cos (a * x) * x$
To calculate the second derivatives with respect to x and a , respectively, type diff(f,2)
or
$\operatorname{diff(f,x,2)}$
which return
ans =
$-\sin \left(a^{*} x\right) * a^{\wedge} 2$
and

```
diff(f,a,2)
```

which returns

```
ans=
- sin(a*x)*x^2
```

Define a, b, x, n, t, and thet a in the MATLAB workspace, using the sym command. The table below illustrates the diff command.

\mathbf{f}	diff(f)
$x^{\wedge} n$	$x^{\wedge} n * n / x$
$\sin (a * t+b)$	$\cos (a * t+b) * a$
$\exp (i * t$ het $)$	$i * \exp (i * t$ het $a)$

To differentiate the Bessel function of the first kind, besselj(nu,z), with respect to z, type

```
syms nu z
b = besselj(nu,z);
db= diff(b)
```

which returns

```
db =
-bessel j(nu+1,z) +nu/z*besselj(nu,z)
```

Thediff function can alsotake a symbolic matrix as its input. In this case, the differentiation is done element-by-element. Consider the example

```
syms a x
A = [cos(a*x), sin(a*x);-sin(a*x), cos(a*x)]
```

which returns

```
A =
[ cos(a*x), sin(a*x)]
[ - sin(a*x), cos(a*x)]
```

The command
diff(A)
returns

```
ans =
[ - sin(a*x)*a, cos(a*x)*a]
[ - cos(a*x)*a, - sin(a*x)*a]
```

You can also perform differentiation of a column vector with respect to a row vector. Consider the transformation from Euclidean ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) to spherical (r, λ, φ) coordinates as given by $x=r \cos \lambda \cos \varphi, y=r \cos \lambda \sin \varphi$, and $z=r \sin \lambda$. Note that λ corresponds to elevation or latitude while φ denotes azimuth or longitude.

To calculate the J acobian matrix, J, of this transformation, use the jacobi an function. The mathematical notation for J is

$$
\mathrm{J}=\frac{\partial(\mathrm{x}, \mathrm{y}, \mathrm{x})}{\partial(\mathrm{r}, \lambda, \varphi)}
$$

For the purposes of tool box syntax, we usel for λ and f for φ. The commands

```
syms r | f
x = r*cos(l)*\operatorname{cos(f); y = r*cos(l)*sin(f); z = r*sin(l);}
J = jacobian([x; y; z], [r | f])
```

return the J acobian

```
| =
    cos(l)*\operatorname{cos(f), rr*sin(l)*cos(f), rr*cos(l)*sin(f)]}]
    cos(l)*sin(f), re*sin(l)*sin(f), r**os(l)*\operatorname{cos(f)]}
        sin(l), r*\operatorname{cos(1), 0]}
```

and the command

```
det) = simple(det(J))
```

returns

```
detJ =
-cos(|)*r^2
```

Notice that the first argument of the jacobian function must be a column vector and the second argument a row vector. Moreover, since the determinant of the J acobian is a rather complicated trigonometric expression, we used the si mpl e command to make trigonometric substitutions and reductions (simplifications). The section "Simplifications and Substitutions" discusses simplification in more detail.

A table summarizingdiff andjacobian follows.

Mathematical Operator	MATLAB Command
$\frac{d \mathrm{f}}{d \mathrm{x}}$	$\operatorname{diff(f)~ordiff(f,x)~}$
$\frac{d \mathrm{f}}{d \mathrm{a}}$	diff(f,a)
$\frac{d^{2} \mathrm{f}}{d \mathrm{~b}^{2}}$	$\operatorname{diff}(f, b, 2)$
$\mathrm{J}=\frac{\partial(\mathrm{r}, \mathrm{t})}{\partial(\mathrm{u}, \mathrm{v})}$	$J=j a c o b i a n([r: t],[u, v])$

Limits

The fundamental idea in calculus is to make calculations on functions as a variable "gets close to" or approaches a certain value. Recall that the definition of the derivative is given by a limit

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

provided this limit exists. The Symbolic Math Tool box allows you to compute the limits of functions in a direct manner. The commands

```
syms h n x
limit( (cos(x+h) - cos(x))/h,h,0 )
```

which return

```
    ans=
```

 \(-\sin (x)\)
 and

```
limit( (1 + x/n)^n, n,inf )
```

which returns

$$
\begin{aligned}
& \operatorname{ans}= \\
& \exp (x)
\end{aligned}
$$

illustrate two of the most important limits in mathematics: the derivative (in this case of $\cos x$) and the exponential function. While many limits

$$
\lim _{x \rightarrow a} f(x)
$$

are "two sided" (that is, the result is the same whether the approach is from the right or left of a), limits at the singularities of $f(x)$ are not. Hence, the three limits

$$
\lim _{x \rightarrow 0} \frac{1}{x}, \lim _{x \rightarrow 0^{-}} \frac{1}{x}, \text { and } \lim _{x \rightarrow 0^{+}} \frac{1}{x}
$$

yield the three distinct results: undefined, $-\infty$, and $+\infty$, respectively.

In the case of undefined limits, the Symbolic Math Tool box returns Na N (not a number). The command

I imit (1/x, x, 0)
or
limit(1/x)
returns
ans $=$
NaN
The command
I imit(1/x, x, 0, 'Ieft')
returns
ans =

- inf
while the command
I imit(1/x, $x, 0$, right')
returns
ans $=$
inf
Observe that the default case, limit (f) is the same as $1 \mathrm{imit}(\mathrm{f}, \mathrm{x}, 0$). Explore the options for the i i mit command in this table. Here, we assume that f is a function of the symbolic object x .

Mathematical Operation	MATLAB Command
$\lim _{x \rightarrow 0} f(x)$	I i mit (f)
$\lim _{x \rightarrow a} f(x)$	।imit (f, x, a) or

Mathematical Operation	MATLAB Command
$\lim _{x \rightarrow a-} f(x)$	limit $\left(f, x, a\right.$, ' l eft' $\left.^{\prime}\right)$
$\lim _{x \rightarrow a+} f(x)$	limit $\left(f, x, a\right.$, ' right' $^{\prime}$

Integration

If f is a symbolic expression, then

```
int(f)
```

attempts to find another symbolic expression, F, so that diff(F)=f.That is, int (f) returns theindefiniteintegral or antiderivative of f (provided oneexists in closed form). Similar to differentiation,

```
int(f,v)
```

uses the symbolic object v as the variable of integration, rather than the variable determined by fi indsym. See how int works by looking at this table.

Mathematical Operation	MATLAB Command
$\int x^{n} d x=\frac{x^{n+1}}{n+1}$	int $\left(x^{\wedge} n\right)$ or int $\left(x^{\wedge} n, x\right)$
$\pi / 2$ $\int_{0} \sin (2 x) d x=1$	int $(\sin (2 * x), 0, p i / 2)$ or int $\left(\sin \left(2^{*} x\right), x, 0, p i / 2\right)$
$g=\cos (a t+b)$	$g=\cos \left(a^{*} t+b\right)$ int (g) or int (g, t)
$\int g(t) d t=\sin (a t+b) / a$	int $(b e s s e l j(1, z))$ or int $(b e s s e l j(1, z), z)$
$\int J_{1}(z) d z=-J_{0}(z)$	

In contrast to differentiation, symbolic integration is a more complicated task. A number of difficulties can arise in computing the integral. The antiderivative, F , may not exist in closed form; it may define an unfamiliar function; it may exist, but the software can't find the antiderivative; the software could find it on a larger computer, but runs out of time or memory on the available machine. Nevertheless, in many cases, MATLAB can perform symbolic integration successfully. For example, create the symbolic variables

```
syms a b theta x y n x1 u
```

This table illustrates integration of expressions containing those variables.

\mathbf{f}	$\operatorname{int}(\mathbf{f})$
$x^{\wedge} n$	$x^{\wedge}(n+1) /(n+1)$
$y^{\wedge}(-1)$	$\log (y)$
$n^{\wedge} x$	$1 / \log (n) *^{*} n^{\wedge} x$
$\sin \left(a^{*} t h e t a+b\right)$	$-1 / a^{*} \cos \left(a^{*} t h e t a+b\right)$
$\exp \left(-x 1^{\wedge} 2\right)$	$1 / 2^{*} \operatorname{pi\wedge }(1 / 2)^{*} \operatorname{erf}(x 1)$
$1 /\left(1+u^{\wedge} 2\right)$	$\operatorname{atan}(u)$

The last example shows what happens if the tool box can't find the antiderivative; it simply returns the command, including the variable of integration, unevaluated.

Definite integration is also possible. The commands

```
int(f,a,b)
```

and

```
int(f,v,a,b)
```

are used to find a symbolic expression for

$$
\int_{a}^{b} f(x) d x \text { and } \int_{a}^{b} f(v) d v
$$

respectively.

Here are some additional examples.

\mathbf{f}	$\mathbf{a ,} \mathbf{b}$	$\operatorname{int}(\mathbf{f}, \mathbf{a}, \mathbf{b})$
$x^{\wedge} 7$	0,1	$1 / 8$
$1 / x$	1,2	$\log (2)$
$\log (x)^{*} \operatorname{sqrt}(x)$	0,1	$-4 / 9$
$\exp \left(-x^{\wedge} 2\right)$	0, inf	$1 / 2 * \operatorname{pi\wedge }(1 / 2)$
besselj(1, z)	0,1	$1 / 4 * \operatorname{hypergeom}([1],[2,2],-1 / 4)$

For the Bessel function (bessel j) example, it is possible to compute a numerical approximation to the value of the integral, using the double function. The command

```
a = int(besselj(1, z),0,1)
```

returns
a $=$
1/4*hypergeom([1],[2, 2],-1/4)
and the command

```
a = double(a)
```

returns
a $=$
0.2348

Integration with Real Constants

One of the subtleties involved in symbolic integration is the "value" of various parameters. For example, the expression

$$
e^{-(k x)^{2}}
$$

is the positive, bell shaped curve that tends to 0 as x tends to $\pm \infty$ for any real number k. An example of this curve is depicted below with

$$
k=\frac{1}{\sqrt{2}}
$$

and generated, using these commands.

```
syms x
k = sym(1/sqrt(2));
f = exp(-(k*x)^2);
ezplot(f)
```

$\exp \left(-1 / 2 x^{2}\right)$

The Maple kernel, however, does not, a priori, treat the expressions k^{2} or x^{2} as positive numbers. To the contrary, Maple assumes that the symbolic variables x and k as a priori indeterminate. That is, they are purely formal variables with no mathematical properties. Consequently, the initial attempt to compute the integral

$$
\int_{-\infty}^{\infty} e^{-(k x)^{2}} d x
$$

in the Symbolic Math Tool box, using the commands

```
syms x k;
f = exp(-(k*x)^2);
int(f,x,-inf,inf)
```

results in the output

```
Definite i ntegration: Can't determine if the integral is
convergent.
Need to know the sign of ..> k^2
Will now try indefinite integration and then take limits.
Warning: Explicit integral could not be found.
ans =
int(exp(-k^2* x^2),x= - inf..inf)
```

In the next section, you will see how to make k a real variable and therefore k^{2} positive.

Real Variables via sym

N otice that Maple is not able to determine the sign of the expression $k \wedge 2$. How does one surmount this obstacle? The answer is to makek a real variable, using the sym command. One particularly useful feature of sym, namely the real option, allows you to declarek to be a real variable. Consequently, the integral above is computed, in the toolbox, using the sequence

```
syms k real
int(f,x,-inf,inf)
```

which returns

```
ans=
signum(k)/k*pi^(1/2)
```

Notice that k is now a symbolic object in the MATLAB workspace and a real variable in the Maple kernel workspace. By typing

```
clear k
```

you only clear k in the MATLAB workspace. To ensure that k has no formal properties (that is, to ensurek is a purely formal variable), type

```
syms k unreal
```

This variation of the s ms command clears k in the Maple workspace. You can also declare a sequence of symbolic variables w, y, x, z to be real, using

```
syms w x y z real
```

In this case, all of the variables in between the words syms andreal are assigned the property real. That is, they are real variables in the Maple workspace.

Symbolic Summation

Y ou can compute symbolic summations, when they exist, by using the sy ms um command. For example, the p-series

$$
1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\ldots
$$

adds to $\pi^{2} / 6$, while the geometric series $1+x+x^{2}+\ldots$ adds to $1 /(1-x)$, provided $|\mathrm{x}|<1$. Three summations are demonstrated below.

```
syms x k
s1 = symsum(1/k^2,1,inf)
s2 = symsum( x^k,k,0,inf)
sl =
1/6*pi^2
s2 =
-1/(x-1)
```


Taylor Series

The statements

```
    syms x
    f = 1/(5+4*\operatorname{cos}(x))
    T=taylor(f,8)
```

return
T =
$1 / 9+2 / 81 * x^{\wedge} 2+5 / 1458 * x^{\wedge} 4+49 / 131220 * x^{\wedge} 6$
which is all the terms up to, but not including, order eight $\left(O\left(x^{8}\right)\right)$ in the Taylor series for $f(x)$.

$$
\sum_{n=0}^{\infty}(x-a)^{n} \frac{f^{(n)}(a)}{n!}
$$

Technically, T is a Maclaurin series, since its basepoint is a $=0$.
The command

```
pretty(T)
```

prints T in a format resembling typeset mathematics.
$1 / 9+2 / 81 x^{2}+5 / 1458 x^{4}+\cdots \cdots x^{6}+131220 x^{6}$

These commands

```
syms x
g = exp(x*sin(x))
t = taylor(g, 12, 2);
```

generate the first 12 nonzero terms of the Taylor series for g about $x=2$.
Let's plot these functions together to see how well this Taylor approximation compares to the actual function g .

```
xd = 1:0.05:3; yd = subs(g,x,xd);
ezplot(t, [1,3]); hold on;
plot(xd, yd, 'r-.')
title('Taylor approximation vs. actual function');
legend('Function','Taylor')
```

Taylor approximation vs. actual function

Special thanks to Professor Gunnar Bäckstrøm of UMEA in Sweden for this example.

Extended Calculus Example

The function

$$
f(x)=\frac{1}{5+4 \cos (x)}
$$

provides a starting point for illustrating several calculus operations in the tool box. It is also an interesting function in its own right. The statements

```
syms x
f=1/(5+4*\operatorname{cos}(x))
```

store the symbolic expression defining the function in f.
The function ezplot (f) produces the plot of $f(x)$ as shown below.

Thee zpl ot function tries to makereasonablechoices for the range of thex-axis and for the resulting scale of the y-axis. Its choices can be overridden by an additional input argument, or by subsequent axis commands. The default domain for a function displayed byezplot is $-2 \pi \leq x \leq 2 \pi$. To produce a graph of $f(x)$ for $a \leq x \leq b$, type

```
ezplot(f,[a b])
```

Let's now look at the second derivative of the function f.

```
f2 = diff(f,2)
f 2 =
32/(5+4*\operatorname{cos}(x)\mp@subsup{)}{}{\wedge}3*\operatorname{sin}(x\mp@subsup{)}{}{\wedge}2+4/(5+4*\operatorname{cos}(x)\mp@subsup{)}{}{\wedge}2*\operatorname{cos}(x)
```

Equivalently, we can typef $2=\operatorname{diff(f,x,2).The~default~scaling~in~ezpl~ot~}$ cuts off part of $f 2$'s graph. Set the axes limits manually to see the entire function.

```
ezplot(f2)
axis([-2*pi 2*pi -5 2])
```


From the graph, it appears that the values of $f^{\prime \prime}(x)$ lie between -4 and 1 . As it turns out, this is not true. We can calculate the exact range for f (i.e., compute its actual maximum and minimum).

The actual maxima and minima of $f^{\prime \prime}(x)$ occur at the zeros of $f^{\prime \prime \prime}(x)$. The statements

```
f3 = diff(f2);
pretty(f3)
```

compute $\mathrm{f}^{\prime \prime \prime}(\mathrm{x})$ and display it in a more readable format.

We can simplify this expression using the statements

```
f 3 = simple(f 3);
pretty(f3)
```


4
$(5+4 \cos (x))$
Now use the sol ve function to find the zeros of $f^{\prime \prime \prime}(x)$.

```
z = solve(f3)
```

returns a 5-by-1 symbolic matrix
z =

each of whose entries is a zero of $f^{\prime \prime \prime}(x)$. The commands

```
format; % Default format of 5 digits
zr = double(z)
```

convert the zeros to double form.
$z r=$

0
$0+2.4381 i$
0. 2.4381 i
2. 4483
2. 4483

So far, we havefound three real zeros and two complex zeros. However, a graph of $f 3$ shows that we have not yet found all its zeros.

```
ezplot(f3)
hold on;
plot(zr,0*zr,'ro')
plot([-2*pi,2*pi], [0,0],'g-.');
title('Zeros of f3')
```

Zeros of $\ddagger 3$

This occurs because $f^{\prime \prime \prime}(x)$ contains a factor of $\sin (x)$, which is zero at integer multiples of π. The function, sol ve ($\sin (x)$), however, only reports the zero at $x=0$.

We can obtain a complete list of the real zeros by translating zr

```
zr=[0 zr(4) pi 2*pi-zr(4)]
```

by multiples of 2π

```
zr=[\mp@code{zr-2*pi zr zr+2*pi];}
```

Now let's plot the transformed $z r$ on our graph for a complete picture of the zeros of $f 3$.

```
plot(zr,o*zr,'kX')
```

Zeros of $\ddagger 3$

The first zero of $f^{\prime \prime \prime}(x)$ found by sol ve is at $x=0$. We substitute 0 for the symbolic variable in $f 2$

```
f20=subs(f2,x,0)
```

to compute the corresponding value of $f^{\prime \prime}(0)$.

```
f 20=
    0.0494
```

A look at the graph of $f^{\prime \prime}(x)$ shows that this is only a local minimum, which we demonstrate by replotting $f 2$.

```
clf
ezplot(f2)
axis([-2*pi 2*pi - 4.25 1.25])
ylabel('f2');
title('Plot of f2 = f''''(x)')
hold on
plot(0, double(f20),'ro')
text(-1,-0.25,'Local mi nimum')
```

The resulting plot

indicates that the global minima occur near $x=-\pi$ and $x=\pi$. We can demonstratethat they occur exactly at $x= \pm \pi$, using thefollowing sequence of commands. First we try substituting $-\pi$ and π into $f^{\prime \prime \prime}(x)$.

```
simple([subs(f 3,x,-sym(pi)), subs(f 3,x, sym(pi))])
```

The result

```
ans =
[ 0, 0]
```

shows that $-\pi$ and π happen to be critical points of $f^{\prime \prime \prime}(x)$. We can see that $-\pi$ and π are global minima by plotting $\mathrm{f} 2(-\mathrm{pi})$ and $\mathrm{f} 2(\mathrm{pi})$ against $\mathrm{f} 2(\mathrm{x})$.

```
m1 = double(subs(f2, x,-pi)); m2 = double(subs(f2,x,pi));
plot(-pi,ml,'go', pi,m2,'go')
text(-1,-4,'Global minima')
```

The actual minima are m1, m2

```
ans =
[ -4, - 4]
```

as shown in the following plot.

The foregoing analysis confirms part of our original guess that the range of $f^{\prime \prime}(x)$ is $[-4,1]$. We can confirm the other part by examining the fourth zero of $f^{\prime \prime \prime}(x)$ found by sol ve. First extract the fourth zerofrom z and assign it to a separate variable

$$
s=z(4)
$$

to obtain

```
    S =
```

 atan(\(\left.\left(-255+60^{*} 19^{\wedge}(1 / 2)\right)^{\wedge}(1 / 2) /\left(10 \cdot 3^{*} 19 \wedge(1 / 2)\right)\right)+p i\)

Executing

```
    sd = double(s)
```

displays the zero's corresponding numeric value.
sd $=$
2. 4483

Plotting the point (s,f2(s)) against f2, using

```
M1 = double(subs(f2,x,s));
plot(sd,M1,'ko')
text(-1,1,'Global maximum')
```

visually confirms that s is a maximum.

The maximum is $M 1=1.0051$.

Therefore, our guess that the maximum of $\mathrm{f}^{\prime \prime}(\mathrm{x})$ is $[-4,1]$ was close, but incorrect. The actual range is [-4, 1.0051].

Now, let's see if integrating $f^{\prime \prime}(x)$ twice with respect to x recovers our original function $f(x)=1 /(5+4 \cos x)$. The command

```
    g = int(int(f2))
```

returns

```
g =
-8/(tan(1/2*x)^2+9)
```

This is certainly not the original expression for $f(x)$. Let's look at the difference $f(x)-g(x)$.
$d=f \cdot g$
pretty(d)

We can simplify this using simple(d) or si mplify(d). Either command produces

```
ans =
```

1

This illustrates the concept that differentiating $f(x)$ twice, then integrating the result twice, produces a function that may differ from $f(x)$ by a linear function of X .

Finally, integrate $f(x)$ once more.

```
F = int(f)
```

The result

```
F =
2/3*atan(1/3*tan(1/2*x))
```

involves the arctangent function.

Though $F(x)$ is the antiderivative of a continuous function, it is itself discontinuous as the following plot shows.

```
ezplot(F)
```

$2 / 3 \operatorname{atan}(1 / 3 \tan (1 / 2 \mathrm{x}))$

N ote that $\mathrm{F}(\mathrm{x})$ has jumps at $\mathrm{x}= \pm \pi$. This occurs because tan x is singular at $x= \pm \pi$.

In fact, as

```
ezplot(atan(tan(x)))
```

shows, the numerical value of at $\tan (\tan (x))$ differs from x by a piecewise constant function that has jumps at odd multiples of $\pi / 2$.

To obtain a representation of $F(x)$ that does not have jumps at these points, we must introduce a second function, J (x) , that compensates for the discontinuities. Then we add the appropriate multiple of $\mathrm{J}(\mathrm{x})$ to $\mathrm{F}(\mathrm{x})$

```
J = sym('round(x/(2*pi))');
c = sym('2/3*pi');
F1 = F+c*)
F1 =
2/3*atan(1/3*tan(1/2*x))+2/3*pi*round(1/2*x/pi)
```

and plot the result.

```
ezplot(F1,[-6.28,6.28])
```

This representation does have a continuous graph.

N otice that we use the domain $[-6.28,6.28]$ in ezpl ot rather than the default domain $[-2 \pi, 2 \pi]$. The reason for this is to prevent an evaluation of F $1=2 / 3 \operatorname{atan}(1 / 3 \tan 1 / 2 x)$ at the singular points $x=-\pi$ and $x=\pi$ where the jumps in F and J do not cancel out one another. The proper handling of branch cut discontinuities in multivalued functions like arctan x is a deep and difficult problem in symbolic computation. Although MATLAB and Maple cannot do this entirely automatically, they do provide the tools for investigating such questions.

Simplifications and Substitutions

There are several functions that simplify symbolic expressions and are used to perform symbolic substitutions.

Simplifications

Here are three different symbolic expressions.

```
syms x
f = x^3-6* x^2 +11*x-6
g=(x-1)*(x-2)*(x-3)
h = x*( x* (x-6) +11)-6
```

Here are their prettyprinted forms, generated by

```
pretty(f), pretty(g), pretty(h)
    3 2
x - 6x + 11 x - 6
(x - 1) (x - 2) (x - 3)
x (x (x - 6) + 11) - 6
```

These expressions are three different representations of the same mathematical function, a cubic polynomial in x.

Each of the three forms is preferable to the others in different situations. The first form, f, is the most commonly used representation of a polynomial. It is simply a linear combination of the powers of x. The second form, g, is the factored form. It displays the roots of the polynomial and is the most accurate for numerical evaluation near the roots. But, if a polynomial does not have such simple roots, its factored form may not be so convenient. The third form, h, is theH orner, or nested, representation. For numerical evaluation, it involves the fewest arithmetic operations and is the most accurate for some other ranges of x.

The symbolic simplification problem involves the verification that these three expressions represent the same function. It also involves a less clearly defined objective - which of these representations is "the simplest"?

This toolbox provides several functions that apply various algebraic and trigonometric identities to transform one representation of a function into another, possibly simpler, representation. These functions arecollect, expand, horner, factor, simplify, andsimple.
collect
The statement

```
collect(f)
```

views f as a polynomial in its symbolic variable, say x, and collects all the coefficients with the same power of x. A second argument can specify the variable in which to collect terms if there is more than one candidate. Here are a few examples.

\mathbf{f}	collect(f)
$(x-1)^{*}(x-2) *(x-3)$	$x^{\wedge} 3-6 * x^{\wedge} 2+11^{*} x-6$
$x^{*}\left(x^{*}(x-6)+11\right)-6$	$x^{\wedge} 3-6 * x^{\wedge} 2+11 * x-6$
$(1+x)^{*} t+x^{*} t$	$2 * x^{*} t+t$

expand

The statement
expand(f)
distributes products over sums and applies other identities invol ving functions of sums. F or example,

\mathbf{f}	expand(f)
$a *(x+y)$	$a * x+a * y$
$(x-1) *(x-2) *(x-3)$	$x^{\wedge} 3-6 * x^{\wedge} 2+11 * x-6$
$x *(x *(x-6)+11)-6$	$x^{\wedge} 3-6 * x^{\wedge} 2+11 * x-6$

\mathbf{f}	expand(f)
$\exp (a+b)$	$\exp (a) * \exp (b)$
$\cos (x+y)$	$\cos (x) * \cos (y)-\sin (x) * \sin (y)$
$\cos (3 * \cos (x))$	$4 * x \wedge 3-3 * x$

horner

The statement

```
horner(f)
```

transforms a symbolic polynomial finto its H orner, or nested, representation. F or example,

\mathbf{f}	horner(f)
$x^{\wedge} 3 \cdot 6 * x^{\wedge} 2+11 * x-6$	$-6+(11+(-6+x) * x) * x$
$1.1+2.2 * x+3 \cdot 3 * x^{\wedge} 2$	$11 / 10+(11 / 5+33 / 10 * x) * x$

factor

If f is a polynomial with rational coefficients, the statement
factor(f)
expresses f as a product of polynomials of lower degree with rational coefficients. If f cannot be factored over the rational numbers, the result is f itself. For example,

\mathbf{f}	factor(f)
$x^{\wedge} 3-6 * x^{\wedge} 2+11 * x-6$	$(x-1) *(x-2) *(x-3)$
$x^{\wedge} 3-6 * x^{\wedge} 2+11 * x-5$	$x^{\wedge} 3-6 * x^{\wedge} 2+11 * x-5$
$x^{\wedge} 6+1$	$\left(x^{\wedge} 2+1\right) *\left(x^{\wedge} 4-x^{\wedge} 2+1\right)$

Here is another example involving fact or. It factors polynomials of the form $x^{\wedge} n+1$. This code
syms x;
n = (1:9)';
$\mathrm{p}=\mathrm{x} \cdot \wedge \mathrm{n}+1$;
$f=f a c t o r(p)$;
[p, f]
returns a matrix with the polynomials in its first column and their factored forms in its second.

[$x+1$,	$x+1$
[$x^{\wedge} 2+1$,	$\left.x^{\wedge} 2+1\right]$
[$x^{\wedge} 3+1$,	$(x+1) *\left(x^{\wedge} 2-x+1\right)$
[$x^{\wedge} 4+1$,	$x^{\wedge} 4+1$
[$x^{\wedge} 5+1$,	$(x+1) *\left(x^{\wedge} 4-x^{\wedge} 3+x^{\wedge} 2-x+1\right)$
[$x^{\wedge} 6+1$,	$\left(x^{\wedge} 2+1\right) *\left(x^{\wedge} 4-x^{\wedge} 2+1\right)$
[$x^{\wedge} 7+1$,	$\left.(x+1)^{*}\left(1-x+x^{\wedge} 2-x^{\wedge} 3+x^{\wedge} 4-x^{\wedge} 5+x^{\wedge} 6\right)\right]$
[$x^{\wedge} 8+1$,	$x^{\wedge} 8+1$
[$x^{\wedge} 9+1$,	$\left.(x+1) *\left(x^{\wedge} 2-x+1\right) *\left(x^{\wedge} 6-x^{\wedge} 3+1\right) \quad\right]$

As an aside at this point, we mention that f act or can also factor symbolic objects containing integers. This is an alternative to using the a a t or function in MATLAB's specfun directory. For example, the following code segment

```
N = sym(1);
for k = 2:11
        N(k) = 10*N(k-1) +1;
end
[N' factor(N')]
```

displays the factors of symbolic integers consisting of 1 s .

$[$	1,	$1]$
$[$	11,	$(11)]$
$[$	111,	$(3) *(37)]$
$[$	1111,	$(11) *(101)]$
$[$	11111,	$(41) *(271)]$
$[$	1111111,	$(3) *(7) *(11) *(13) *(37)]$
$[$	1111111,	$\left.(11)^{*}(73) *(101) *(137)\right]$
$[$	11111111,	$(3) \wedge 2 *(37) *(333667)]$
$[$	111111111,	$(11) *(41) *(271) *(9091)]$
$[$	111111111,	$(513239) *(21649)]$

simplify

Thesimplify function is a powerful, general purpose tool that applies a number of algebraic identities invol ving sums, integral powers, square roots and other fractional powers, as well as a number of functional identities involving trig functions, exponential and log functions, Bessel functions, hypergeometric functions, and the gamma function. Here are some examples.

f	simplify(f)
$x *(x *(x-6)+11)-6$	$x^{\wedge} 3-6 * \wedge^{\wedge} 2+11 * x-6$
$\left(1-x^{\wedge} 2\right) /(1-x)$	$x+1$
$\left(1 / a^{\wedge} 3+6 / a^{\wedge} 2+12 / a+8\right) \wedge(1 / 3)$	$\left((2 * a+1)^{\wedge} 3 / a^{\wedge} 3\right)^{\wedge}(1 / 3)$
$\begin{aligned} & \text { syms } x \text { y positive } \\ & \log (x * y) \end{aligned}$	$\log (x)+\log (y)$
$\exp (x) * \exp (y)$	$\exp (x+y)$
besselj $(2, x)+\operatorname{besselj}(0, x)$	$2 \mid x *$ besselj ($1, x$)
gamma $(x+1)-x^{*}$ gamma (x)	0
$\cos (x)^{\wedge} 2+\sin (x)^{\wedge} 2$	1

simple

Thesi mple function has the unorthodox mathematical goal of finding a simplification of an expression that has the fewest number of characters. Of course, there is little mathematical justification for claiming that one expression is "simpler" than another just because its ASCII representation is shorter, but this often proves satisfactory in practice.

Thesi mple function achieves its goal by independently applying simplify, collect, factor, and other simplification functions to an expression and keeping track of the lengths of the results. The si mple function then returns the shortest result.

The si mple function has several forms, each returning different output. The form

```
simple(f)
```

displays each trial simplification and the simplification function that produced it in the MATLAB command window. The si mple function then returns the shortest result. For example, the command

```
simple(cos(x)^2 + sin(x)^2)
```

displays the following alternative simplifications in the MATLAB command window

```
simplify:
1
radsimp:
cos(x)^2+\operatorname{sin}(x\mp@subsup{)}{}{\wedge}2
combine(trig):
1
factor:
cos(x)^2+sin(x)^^2
expand:
cos(x)^2+\operatorname{sin}(x\mp@subsup{)}{}{\wedge}2
convert(exp):
(1/2*exp(i*x)+1/2/exp(i*x))^2-1/4*(exp(i**)
```

```
convert(sincos):
cos(x)^2+sin(x)^2
convert(tan):
(1-tan(1/2*x)^2) ^2/(1+tan(1/2*x)^2) ^2+4*tan(1/2*x)^2/
(1+tan(1/2*x)^2)^2
collect(x):
cos(x)^2+\operatorname{sin}(x\mp@subsup{)}{}{\wedge}2
and returns
```

```
ans =
```

ans =
1

```

This form is useful when you want to check, for example, whether the shortest form is indeed the simplest. If you are not interested in how si mpl e achieves its result, use the form
```

f = simple(f)

```

This form simply returns the shortest expression found. For example, the statement
```

f = simple(cos(x)^^2+sin(x)^2)

```
returns
```

f =

```
1

If you want to know which simplification returned the shortest result, use the multiple output form.
```

[F, how] = simple(f)

```

This form returns the shortest result in thefirst variableand the simplification method used to achieve the result in the second variable. For example, the statement
```

[f, how] = simple(cos(x)^^2+sin(x)^^2)

```
returns
```

f =
1
how =
combine

```

Thes i mple function sometimes improves on the result returned by si mplify, one of the simplifications that it tries. For example, when applied to the examples given for si mplify, si mple returns a simpler (or at least shorter) result in two cases.
\begin{tabular}{l|l|l}
\hline \(\mathbf{f}\) & simplify (f) & simple(f) \\
\hline\(\left(1 / a^{\wedge} 3+6 / a^{\wedge} 2+12 / a+8\right)^{\wedge}(1 / 3)\) & \(\left((2 * a+1)^{\wedge} 3 / a^{\wedge} 3\right)^{\wedge}(1 / 3)\) & \((2 * a+1) / a\) \\
\hline \begin{tabular}{l} 
syms \(x\) y positive \\
\(\log (x * y)\)
\end{tabular} & \(\log (x)+\log (y)\) & \(\log \left(x^{*} y\right)\) \\
\hline
\end{tabular}

In some cases, it is advantageous to apply si mple twice to obtain the effect of two different simplification functions. For example, the statements
```

 f = (1/a^3+6/a^2+12/a+8)^(1/3);
 simple(simple(f))
    ```
return
\(2+1 /\) a
The first application, simple(f), uses radsimp to produce ( \(2 * a+1\) ) /a; the second application uses combine(trig) to transform this to \(1 / a+2\).
Thes i mple function is particularly effective on expressions involving trigonometric functions. Here are some examples.
\begin{tabular}{l|l}
\hline \(\mathbf{f}\) & simple(f) \\
\hline \(\cos (x)^{\wedge} 2+\sin (x)^{\wedge} 2\) & 1 \\
\hline \(2 * \cos (x)^{\wedge} 2 \cdot \sin (x)^{\wedge} 2\) & \(3 * \cos (x)^{\wedge} 2 \cdot 1\) \\
\hline \(\cos (x)^{\wedge} 2 \cdot \sin (x)^{\wedge} 2\) & \(\cos (2 * x)\) \\
\hline
\end{tabular}
\begin{tabular}{l|l}
\hline \(\mathbf{f}\) & simple(f) \\
\hline \(\cos (x)+\left(-\sin (x)^{\wedge} 2\right)^{\wedge}(1 / 2)\) & \(\cos (x)+i * \sin (x)\) \\
\hline \(\cos (x)+i * \sin (x)\) & \(\exp (i * x)\) \\
\hline \(\cos (3 * \cos (x))\) & \(4 * x \wedge 3-3 * x\) \\
\hline
\end{tabular}

\section*{Substitutions}

There are two functions for symbolic substitution: subexpr and subs.

\section*{subexpr}

These commands
```

syms a x
s=solve(x^3+a*x+1)

```
solve the equation \(x^{\wedge} 3+a^{*} x+1=0\) for \(x\).
\(s=\)
    \(1 / 6 *\left(-108+12 *\left(12 * a^{\wedge} 3+81\right)^{\wedge}(1 / 2)\right)^{\wedge}(1 / 3)-2 * a /\)
    \(\left.\left(-108+12 *\left(12^{*} a^{\wedge} 3+81\right)^{\wedge}(1 / 2)\right)^{\wedge}(1 / 3)\right]\)
\(\left[-1 / 12 *\left(-108+12 *\left(12^{*} a^{\wedge} 3+81\right)^{\wedge}(1 / 2)\right)^{\wedge}(1 / 3)+a /\right.\)
    \(\left(-108+12 *\left(12 * a^{\wedge} 3+81\right)^{\wedge}(1 / 2)\right)^{\wedge}(1 / 3)+1 / 2 * i * 3^{\wedge}(1 / 2) *(1 /\)
    \(6 *\left(-108+12 *\left(12 * a^{\wedge} 3+81\right)^{\wedge}(1 / 2)\right)^{\wedge}(1 / 3)+2 * a /\)
    \(\left.\left.\left(-108+12^{*}\left(12^{*} a^{\wedge} 3+81\right)^{\wedge}(1 / 2)\right)^{\wedge}(1 / 3)\right)\right]\)
\(\left[-1 / 12 *\left(-108+12 *\left(12 * a^{\wedge} 3+81\right)^{\wedge}(1 / 2)\right)^{\wedge}(1 / 3)+a /\right.\)
    \(\left(-108+12 *\left(12 * a^{\wedge} 3+81\right)^{\wedge}(1 / 2)\right)^{\wedge}(1 / 3)-1 / 2 * i * 3^{\wedge}(1 / 2) *(1 /\)
    \(6 *\left(-108+12 *\left(12 * a^{\wedge} 3+81\right)^{\wedge}(1 / 2)\right)^{\wedge}(1 / 3)+2 * a /\)
    \(\left.\left.\left(-108+12 *\left(12 * a^{\wedge} 3+81\right)^{\wedge}(1 / 2)\right)^{\wedge}(1 / 3)\right)\right]\)

Use the pretty function to display s in a more readable form.
pretty(s)
\(s=\)


Thepretty command inherits the \%n ( \(n\), an integer) notation from Maple to denote subexpressions that occur multiple times in the symbolic object. The subexpr function allows you to save these common subexpressions as well as the symbolic object rewritten in terms of the subexpressions. The subexpressions are saved in a column vector called sigma.
Continuing with the example
```

r = subexpr(s)

```
returns
```

sigma =
-108+12*(12*a^3+81)^(1/2)
r =
[1/6*sigma^(1/3)-2*a/sigma^(1/3)]
[-1/12*sigma^(1/3) +a/sigma^(1/3)+1/2*i*3^(1/2)*(1/6*sigma^
(1/3)+2*a/sigma^(1/3))]

```
```

[-1/12*sigma^(1/3)+a/sigma^(1/3)-1/2*i*3^(1/2)*(1/6*sigma^
(1/3)+2*a/sigma^(1/3))]

```

Notice that subexpr creates the variablesigma in the MATLAB workspace. You can verify this by typing whos, or the command
si gma
which returns
```

sigma =
-108+12*(12*a^3+81)^(1/2)

```

\section*{subs}

Let's find the eigenvalues and eigenvectors of a circulant matrix \(A\).
```

syms a b c
A = [a b c; b c a; c a b];
[v,E] = eig(A)
v =
[-(a+(b^2-b*a-c*b-c*a+a^2+c^2)^(1/2)-b)/(a-c),
-(a-(b^2-b*a-c*b-c*a+a^2+c^2)^(1/2)-b)/(a-c), 1]
[-(b-c-(b^2-b*a-c*b-c*a+a^2+c^2)^(1/2))/(a-c),
-(b-c+(b^2-b*a-c*b-c*a+a^2+c^2)^(1/2))/(a-c), 1]
[1,
1,
1]
E =
[(b^2.b*a-c*b.
c*a+a^2+c^2)^(1/2), 0, 0]
[0, -(b^2-b*a-c*b.
c*a+a^2+c^2)^(1/2), 0]
[0, 0, b+c+a]

```

Suppose we want to replace the rather lengthy expression
\[
\left(b^{\wedge} 2-b^{*} a-c^{*} b-c^{*} a+a^{\wedge} 2+c^{\wedge} 2\right)^{\wedge}(1 / 2)
\]
throughout \(v\) and \(E\). We first usesubexpr
```

v = subexpr(v,'S')

```
which returns
```

S =
(b^2-b*a-c*b-c*a+a^2+c^2)^(1/2)
v =
[-(a+S-b)/(a-c),-(a-S-b)/(a-c), 1]
[-(b-c-S)/(a-c), -(b-c+S)/(a-c), 1]
[1, 1, 1]

```

Next, substitute the symbol S into E with
E = subs(E, S,'S')
E =
\(\left[\begin{array}{llll}1 & S & 0, & 0\end{array}\right]\)
\(\left.\begin{array}{llll}{[ } & 0, & -S & 0\end{array}\right]\)
[ \(\quad 0, \quad 0, b+c+a\) ]
Now suppose we want to evaluate \(v\) at \(a=10\). We can do this using the subs command.
```

subs(v, a, 10)

```

This replaces all occurrences of a in \(v\) with 10.
```

[-(10+5-b)/(10-c), -(10-5-b)/(10-c), 1]
[-(b-c-S)/(10-c), -(b-c+S)/(10-c), 1]
[1, 1, 1]

```

N otice, however, that thesymbolic expression represented by \(s\) is unaffected by this substitution. That is, the symbol a in S is not replaced by 10. The subs command is also a useful function for substituting in a variety of values for several variables in a particular expression. Let's look at 5 . Suppose that in addition to substitutinga \(=10\), wealso want to substitute the values for 2 and 10 for \(b\) and \(c\), respectively. The way to do this is to set values for \(a, b\), and \(c\) in the workspace. Then subs evaluates its input using the existing symbolic and double variables in the current workspace. In our example, we first set
```

a = 10; b = 2; c = 10;
subs(S)
ans =
8

```

Tolook at the contents of our workspace, type whos, which gives
Na me
Size
Bytes
Cl as s
\begin{tabular}{lrrl} 
A & \(3 \times 3\) & 878 & symobject \\
E & \(3 \times 3\) & 888 & symobject \\
S & \(1 \times 1\) & 186 & symobject \\
a & \(1 \times 1\) & 8 & double array \\
ans & \(1 \times 1\) & 140 & symobject \\
b & \(1 \times 1\) & 8 & double array \\
c & \(1 \times 1\) & 8 & double array \\
v & \(3 \times 3\) & 982 & symobject
\end{tabular}
\(a, b\), and \(c\) arenow variables of class double whileA, \(E, S\), and \(v\) remain symbolic expressions (class sym).

If you want to preserve \(a, b\), and \(c\) as symbolic variables, but still alter their value within \(s\), use this procedure.
```

syms a b c
subs(S,{a,b,c},{10, 2,10})
ans =
8

```

Typing whos reveals that \(a, b\), and c remain 1-by-1 sym objects.
Thesubs command can be combined with double to evaluate a symbolic expression numerically. Suppose we have
```

syms t
M = (1-t^^2)*exp(-1/2*t^2);
P}=(1-\mp@subsup{t}{}{\wedge}2)*\operatorname{sech}(t)

```
and want to see how \(M\) and \(P\) differ graphically.
One approach is to type
```

ezplot(M); hold on; ezplot(P)

```
but this plot

does not readily help us identify the curves.
Instead, combinesubs, double, and pl ot
```

T = -6:0.05:6;
MT = double(subs(M, t,T));
PT = double(subs(P,t,T));
plot(T,MT,'b',T,PT,'r.,')
title(' ')
legend('M','P')
xlabel('t'); grid

```
to produce a multicolored graph that indicates the difference between \(M\) and \(P\).


F inally the use of subs with strings greatly facilitates the solution of problems involving the Fourier, Laplace, or z-transforms.

\section*{Variable-Precision Arithmetic}

\section*{Overview}

There are three different kinds of arithmetic operations in this toolbox.
\begin{tabular}{ll} 
Numeric & MATLAB's floating-point arithmetic \\
Rational & Maple's exact symbolic arithmetic \\
VPA & Maple's variable-precision arithmetic
\end{tabular}

For example, the MATLAB statements
format long
\(1 / 2+1 / 3\)
use numeric computation to produce
0.83333333333333

With the Symbolic M ath Tool box, the statement
sym(1/2)+1/3
uses symbolic computation to yield
5/6
And, also with the tool box, the statements
digits (25)
vpa('1/2+1/3')
use variable-precision arithmetic to return
8333333333333333333333333
The floating-point operations used by numeric arithmetic are the fastest of the three, and require the least computer memory, but the results are not exact. The number of digits in the printed output of MATLAB's double quantities is controlled by the for mat statement, but the internal representation is always the eight-byte floating-point representation provided by the particular computer hardware.

In the computation of the numeric result above, there are actually three roundoff errors, one in the division of 1 by 3 , one in the addition of \(1 / 2\) to the result of the division, and one in the binary to decimal conversion for the printed output. On computers that use IEEE floating-point standard arithmetic, the resulting internal value is the binary expansion of \(5 / 6\), truncated to 53 bits. This is approximately 16 decimal digits. But, in this particular case, the printed output shows only 15 digits.

The symbolic operations used by rational arithmetic are potentially the most expensive of the three, in terms of both computer time and memory. Theresults are exact, as long as enough time and memory are available to complete the computations.

Variable-precision arithmetic falls in between the other two in terms of both cost and accuracy. A global parameter, set by the function digits, controls the number of significant decimal digits. Increasing the number of digits increases the accuracy, but also increases both the time and memory requirements. The default value of di gits is 32 , corresponding roughly to floating-point accuracy.

TheMaple documentation uses theterm "hardwarefloating-point" for what we are calling "numeric" or "floating-point" and uses the term "floating-point arithmetic" for what we are calling "variable-precision arithmetic."

\section*{Example: Using the Different Kinds of Arithmetic}

\section*{Rational Arithmetic}

By default, the Symbolic Math Tool box uses rational arithmetic operations, i.e., Maple's exact symbolic arithmetic. Rational arithmetic is invoked when you create symbolic variables using the sy m function.

Thes y m function converts a double matrix to its symbol ic form. F or example, if the double matrix is
```

A =
1.1000 1.2000 1.3000
2.1000 2.2000 2.3000
3.1000 3.2000 3.3000
its symbolic form,S = sym(A), is
S =
[11/10, 6/5, 13/10]

```
```

[21/10, 11/5, 23/10]
[31/10, 16/5, 33/10]

```

For this matrix A, it is possible to discover that the elements are the ratios of small integers, so the symbolic representation is formed from those integers. On the other hand, the statement
```

E = [exp(1) sqrt(2); log(3) rand]

```
returns a matrix
\[
E=
\]
\[
2.71828182845905 \quad 1.41421356237310
\]
\[
1.09861228866811 \quad 0.21895918632809
\]
whose elements are not the ratios of small integers, so sym(E) reproduces the floating-point representation in a symbolic form.
```

[3060513257434037*2^(-50), 3184525836262886*2^(-51)]
[2473854946935174*2^(-51), 3944418039826132*2^(-54)]

```

\section*{Variable-Precision Numbers}

Variable-precision numbers are distinguished from the exact rational representation by the presence of a decimal point. A power of 10 scale factor, denoted by 'e' , is allowed. To use variable-precision instead of rational arithmetic, create your variables using the vpa function.
For matrices with purely double entries, the vpa function generates the representation that is used with variable-precision arithmetic. Continuing on with our example, and usingdigits(4), applyingvpa to the matrix s
```

vpa(S)

```
generates the output

\section*{S =}
\([1.100,1.200,1.300]\)
[2.100, 2.200, 2.300]
[3.100, 3.200, 3.300]
and with digits(25)
\[
F=v p a(E)
\]
generates
\(\mathrm{F}=\)
[ \(2.718281828459045534884808, \quad 1.414213562373094923430017\) ]
[1.098612288668110004152823,. 2189591863280899719512718 ]

\section*{Converting to Floating-Point}

To convert a rational or variable-precision number to its MATLAB floating-point representation, use the double function.

In our example, both double(sym(E)) and double(vpa(E)) return E.

\section*{Another Example}

The next example is perhaps more interesting. Start with the symbolic expression
```

f = sym('exp(pi*sqrt(163))')

```

The statement
double(f)
produces the printed floating-point value
2. \(625374126407687 \mathrm{e}+17\)

Using the second argument of v pa to specify the number of digits, vpa(f, 18)
returns
262537412640768744.
whereas
vpa(f,25)
returns
262537412640768744.0000000

We suspect that \(f\) might actually have an integer value. This suspicion is reinforced by the 30 digit value, vpa(f,30)
262537412640768743.999999999999

Finally, the 40 digit value, vpa( \(f, 40\) )
262537412640768743.9999999999992500725944
shows that \(f\) is very close to, but not exactly equal to, an integer.

\section*{Linear Algebra}

\section*{Basic Algebraic Operations}

Basic algebraic operations on symbolic objects are the same as operations on MATLAB objects of class double. This is illustrated in the following example.
TheGivens transformation produces a plane rotation through the anglet . The statements
```

syms t;
G = [cos(t) sin(t); -sin(t) cos(t)]

```
create this transformation matrix.
G =
[ \(\cos (t), \sin (t)]\)
[ \(\sin (t), \cos (t)]\)
Applying the Givens transformation twice should simply be a rotation through twice the angle. The corresponding matrix can be computed by multiplying \(G\) by itself or by raising \(G\) to the second power. Both
```

 A = G*G
    ```
and
\[
A=G^{\wedge} 2
\]
produce
```

A =
[cos(t)^2-sin(t)^2, 2*\operatorname{cos(t)*sin(t)]}
[- 2* cos(t)*sin(t), cos(t)^2-sin(t)^2]

```

Thesimple function
```

A = simple(A)

```
uses a trigonometric identity to return the expected form by trying several different identities and picking the one that produces the shortest representation.
```

A =
[\operatorname{cos}(2*t), sin(2*t)]
[-\operatorname{sin}(2*t), cos(2*t)]

```

A Givens rotation is an orthogonal matrix, so its transpose is its inverse. Confirming this by
```

I = G.' *G

```
which produces
```

| =
[\operatorname{cos(t)^2+sin(t)^2, 0]}
[0, cos(t)^2+sin(t)^2]

```
and then
```

I = simple(l)
| =
[1, 0]
[0, 1]

```

\section*{Linear Algebraic Operations}

Let's do several basic linear algebraic operations.
The command
```

H = hilb(3)

```
generates the 3-by-3 Hilbert matrix. With format short, MATLAB prints H =
\begin{tabular}{lll}
1.0000 & 0.5000 & 0.3333 \\
0.5000 & 0.3333 & 0.2500 \\
0.3333 & 0.2500 & 0.2000
\end{tabular}

The computed elements of H are floating-point numbers that are the ratios of small integers. Indeed, H is a MATLAB array of class double. Converting H to a symbolic matrix
\[
H=s y m(H)
\]
gives
\([1,1 / 2,1 / 3]\)
\([1 / 2,1 / 3,1 / 4]\)
\([1 / 3,1 / 4,1 / 5]\)
This allows subsequent symbolic operations on H to produce results that correspond to the infinitely precise Hilbert matrix, sym( hil b(3)), not its floating-point approximation, hilb(3).Therefore,
inv(H)
produces
\(\left[\begin{array}{lll}{\left[\begin{array}{ll}\text { 9, }\end{array}\right]} \\ \text { 36, }\end{array}\right.\)
\(\left[\begin{array}{ll}-36, ~ 192, ~-180]\end{array}\right.\)
[ 30, -180, 180]
and
det ( H )
yields
1/2160
We can use the backslash operator to solve a system of simultaneous linear equations. The commands
```

b = [llll}$$
\begin{array}{ll}{1}&{1}\end{array}
$$
x = H\b % Solve Hx = b

```
produce the solution
[ 3]
[-24]
[ 30]
All three of these results, the inverse, the determinant, and the solution to the linear system, are the exact results corresponding to the infinitely precise, rational, Hilbert matrix. On the other hand, using digits(16), the command
```

V = vpa(hilb(3))

```

\section*{returns}
```

[1.,. 5000000000000000,. .3333333333333333]
[. 50000000000000000, . 3333333333333333,. . 250000000000000000]
[.3333333333333333,.25000000000000000,. . 200000000000000000]

```

The decimal points in the representation of the individual elements are the signal to use variable-precision arithmetic. The result of each arithmetic operation is rounded to 16 significant decimal digits. When inverting the matrix, these errors are magnified by the matrix condition number, which for hilb(3) is about 500. Consequently,
```

i nv(V)

```
which returns
```

[9.00000000000000082, - 36.000000000000039, 30.0000000000000035]
[-36.000000000000039, 192.0000000000021, -180.0000000000019]
[30.0000000000000035, - 180.00000000000019, 180.0000000000019]

```
shows the loss of two digits. So does
```

det(V)

```
which gives
```

 462962962962958e-3
    ```
and
\(V \backslash b\)
which is
[ 3.0000000000000041\(]\)
[-24.000000000000021]
[ 30.000000000000019]
Since \(H\) is nonsingular, the null space of \(H\) null ( H )
and the column space of H
```

colspace(H)

```
produce an empty matrix and a permutation of the identity matrix, respectively. To make a more interesting example, let's try to find a values for \(H(1,1)\) that makes \(H\) singular. The commands
syms s
\(H(1,1)=s\)
\(Z=\operatorname{det}(H)\)
sol = solve(Z)
produce
H =
[ \(5,1 / 2,1 / 3]\)
\([1 / 2,1 / 3,1 / 4]\)
\([1 / 3,1 / 4,1 / 5]\)
Z =
1/240*s-1/270
sol =
8/9
Then
H \(=\) subs ( \(H, s, s o l)\)
substitutes the computed value of sol for s in H to give
H \(=\)
\([8 / 9,1 / 2,1 / 3]\)
\([1 / 2,1 / 3,1 / 4]\)
\([1 / 3,1 / 4,1 / 5]\)
Now, the command
\(\operatorname{det}(\mathrm{H})\)
returns
ans \(=\)
0
and
inv(H)
produces an error message
```

??? error using ==> inv
Error, (in inverse) singular matrix

```
becauseH is singular. For this matrix, \(Z=\) null(H) and C = colspace(H) are nontrivial.
```

Z =
[1]
[-4]
[10/3]
C =
[0, 1]
[1, 0]
[6/5, -3/10]

```

It should be pointed out that even though H is singular, vpa( \(H\) ) is not. For any integer valued, setting
digits(d)
and then computing
```

det(vpa(H))

```
inv(vpa(H))
results in a determinant of size \(10^{\wedge}(-\mathrm{d})\) and an inverse with elements on the order of \(10^{\wedge} \mathrm{d}\).

\section*{Eigenvalues}

The symbolic eigenvalues of a square matrix A or the symbolic eigenvalues and eigenvectors of \(A\) are computed, respectively, using the commands
```

E = eig(A)
[V,E] = eig(A)

```

The variable-precision counterparts are
```

E = eig(vpa(A))
[V,E] = eig(vpa(A))

```

The eigenvalues of \(A\) are the zeros of the characteristic polynomial of \(A\), \(\operatorname{det}\left(A-x^{*}\right)\) ), which is computed by
```

poly(A)

```

The matrix H from the last section provides our first example.
```

H =
[8/9, 1/2, 1/3]
[1/2, 1/3, 1/4]
[1/3, 1/4, 1/5]

```

The matrix is singular, so one of its eigenvalues must be zero. The statement
```

[T,E] = eig(H)

```
produces the matrices \(T\) and \(E\). The columns of \(T\) are the eigenvectors of \(H\).
```

T =

```
```

[1, 28/153+2/153*12589^(1/2), 28/153-2/153*12589^(12)]
[-4, 1, 1]
10/3, 92/255-1/255*12589^(1/2), 292/255+1/255*12589^(12)]

```

Similarly, the diagonal elements of E are the eigenvalues of H .
```

[0, 0
0]
[0, 32/45+1/180*12589^(1/2), 0]
[0, 0, 32/45-1/180*12589^(1/2)]

```

It may be easier to understand the structure of the matrices of eigenvectors, T , and eigenvalues, E , if we convert T and E to decimal notation. We proceed as follows. The commands
```

Td = double(T)
Ed = double(E)

```
return
Td \(=\)
\begin{tabular}{rrr}
1.0000 & 1.6497 & -1.2837 \\
-4.0000 & 1.0000 & 1.0000 \\
3.3333 & 0.7051 & 1.5851
\end{tabular}
```

Ed =

| 0 | 0 | 0 |
| ---: | ---: | ---: |
| 0 | 1.3344 | 0 |
| 0 | 0 | 0.0878 |

```

The first eigenvalue is zero. The corresponding eigenvector (the first column of Td ) is the same as the basis for the null space found in the last section. The other two eigenvalues are the result of applying the quadratic formula to
\[
x^{\wedge} 2.64 / 45 * x+253 / 2160
\]
which is the quadratic factor infactor (poly(H)).
```

syms x
g = simple(factor(poly(H))/x);
solve(g)

```

Closed form symbolic expressions for the eigenvalues are possible only when the characteristic polynomial can be expressed as a product of rational polynomials of degree four or less. The Rosser matrix is a classic numerical analysis test matrix that happens to illustrate this requirement. The statement
```

R = sym(gallery('rosser'))

```
generates
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{\(R=\)} \\
\hline 611 & 196 & - 192 & 407 & - 8 & - 52 & . 49 & \(29]\) \\
\hline 196 & 899 & 113 & - 192 & . 71 & . 43 & - 8 & -44] \\
\hline [-192 & 113 & 899 & 196 & 61 & 49 & 8 & \(52]\) \\
\hline 407 & - 192 & 196 & 611 & 8 & 44 & 59 & -23] \\
\hline - 8 & . 71 & 61 & 8 & 411 & - 599 & 208 & 208] \\
\hline - 52 & . 43 & 49 & 44 & - 599 & 411 & 208 & 208] \\
\hline - 49 & - 8 & 8 & 59 & 208 & 208 & 99 & -911] \\
\hline 29 & . 44 & 52 & 23 & 208 & 208 & . 911 & \(99]\) \\
\hline
\end{tabular}

The commands
```

p = poly(R);
pretty(factor(p))

```
produce
\(x(x-1020)\left(x^{2}-1020 x+100\right)\left(x^{2} \cdot 1040500\right)(x-1000)^{2}\)

Thecharacteristic polynomial (of degree 8) factors nicely intothe product of two linear terms and three quadratic terms. We can see immediately that four of the eigenvalues are 0, 1020, and a double root at 1000. The other four roots are obtained from the remaining quadratics. Use
```

eig(R)

```
to find all these values
\begin{tabular}{|c|c|}
\hline [ & \(0]\) \\
\hline [ & 1020] \\
\hline [ \(510+100 * 26^{\wedge}\) & (1/2)] \\
\hline [510-100*26^ & (1/2)] \\
\hline 10*10405^ & (1/2)] \\
\hline -10*10405^ & (1/2)] \\
\hline [ & 1000] \\
\hline [ & \(1000]\) \\
\hline
\end{tabular}

The Rosser matrix is not a typical example; it is rare for a full 8 -by- 8 matrix to have a characteristic polynomial that factors into such simple form. If we change the two "corner" elements of \(R\) from 29 to 30 with the commands
```

S = R; S(1,8) = 30; S(8,1) = 30;

```
and then try
```

p = poly(S)

```
we find
```

p =
402509682136000000+51264008540948000*x-
1082699388411166000*x^2+4287832912719760*x^.3.
5327831918568*x^4+82706090**^5 +5079941**^6.
4040*x^7+x^8

```

We also find that \(f\) act or \((p)\) is \(p\) itself. That is, the characteristic polynomial cannot be factored over the rationals.

For this modified Rosser matrix
```

F = eig(S)

```
returns
```

F =
[-1020.0532142558915165931894252600]
[-. 17053529728768998575200874607757]
[. . 21803980548301606860857564424981]
[999.94691786044276755320289228602]
[1000.1206982933841335712817075454]
[1019.5243552632016358324933278291]
[1019.9935501291629257348091808173]
[1020.4201882015047278185457498840]

```

Notice that these values are close to the eigenvalues of the original Rosser matrix. Further, the numerical values of \(F\) are a result of Maple's floating-point arithmetic. Consequently, different settings of digits do not alter the number of digits to the right of the decimal place.

It is also possible to try to compute eigenvalues of symbolic matrices, but closed form solutions are rare. The Givens transformation is generated as the matrix exponential of the elementary matrix
\[
A=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]
\]

The Symbolic Math Tool box commands
```

syms t
A = sym([0 1; - 1 0]);
G = expm(t*A)
return
[cos(t),

```

Next, the command
```

 g = eig(G)
    ```
produces
```

g =
[\operatorname{cos}(t)+(\operatorname{cos}(t)^2-1)^(1/2)]
[\operatorname{cos}(t)-(cos(t)^2-1)^(1/2)]

```

We can use s i mple to simplify this form of g . Indeed, repeated application of si mple
```

for j = 1:4
[g,how] = simple(g)
end

```
produces the best result
```

g =
[\operatorname{cos}(t)+(-sin(t)^2)^(1/2)]
[\operatorname{cos}(t)-(-sin(t)^2)^(1/2)]
how =
simplify
g =
[\operatorname{cos(t) +i*sin(t)]}
[cos(t)-i*sin(t)]
how =
radsi mp
g =
[exp(i*t)]
[1/ exp(i*t)]
how =
convert(exp)
g =
[exp(i*t)]
[exp(-i*t)]
how =
combine

```

Notice the first application of simple uses simplify to produce a sum of sines and cosines. Next, simple invokes radsimp to producecos(t) +i*sin(t) for the first eigenvector. The third application of simple uses convert (exp) to change the sines and cosines to complex exponentials. The last application of simple uses simplify to obtain the final form.

\section*{J ordan Canonical Form}

TheJ ordan canonical form results from attempts to diagonalize a matrix by a similarity transformation. F or a given matrix \(A\), find a nonsingular matrix \(V\), so that inv(V)*A*V, or, more succinctly, \(J=V \backslash A^{*} V\), is "as close to diagonal as possible." For almost all matrices, theJ ordan canonical form is the diagonal matrix of eigenvalues and the columns of the transformation matrix are the eigenvectors. This always happens if the matrix is symmetric or if it has distinct eigenvalues. Some nonsymmetric matrices with multiple eigenvalues cannot be diagonalized. TheJ ordan form has the eigenvalues on its diagonal, but some of the superdiagonal elements are one, instead of zero. The statement
```

f = jordan(A)

```
computes the J ordan canonical form of A. The statement
```

[V,J] = jordan(A)

```
also computes the similarity transformation. The columns of \(V\) are the generalized eigenvectors of A.

TheJ ordan form is extremely sensitive to perturbations. Almost any change in A causes its J ordan form to be diagonal. This makes it very difficult to compute the J ordan form reliably with floating-point arithmetic. It also implies that A must beknown exactly (i.e., without round-off error, etc.). Its elements must be integers, or ratios of small integers. In particular, the variable-precision calculation, jordan(vpa(A)), is not allowed.
For example, let
```

A = sym([12, 32,66,116;-25,-76,-164,-294;
21,66,143,256;-6,-19,-41,-73])
A =
[12, 32, 66, 116]
[. 25, - 76, . 164, - 294]
[21, 66, 143, 256]
[-6, -19, -41, - 73]

```

Then
```

[V,]] = jordan(A)
produces
V =
[4, -2, 4, 3]
[-6, 8, -11, -8]
[4, -7, 10, 7]
[-1, 2, -3, -2]
| =
[1, 1, 0, 0]
[0, 1, 0, 0]
[0, 0, 2, 1]
[0, 0, 0, 2]

```

Therefore \(A\) has a double eigenvalue at 1 , with a singleJ ordan block, and a double eigenvalue at 2 , also with a singleJ ordan block. The matrix has only two eigenvectors, \(\mathrm{V}(:, 1)\) and \(\mathrm{V}(:, 3)\). They satisfy
```

A*V(:,1) = 1*V(:,1)
A*V(:,3) = 2*V(:,3)

```

The other two columns of \(V\) are generalized eigenvectors of grade 2 . They satisfy
```

A*V(:,2) = 1*V(:,2) + V(:,1)
A*V(:,4) = 2*V(:,4) + V(:,3)

```

In mathematical notation, with \(\mathbf{v}_{\mathrm{j}}=\mathrm{v}(:, j)\), the columns of v and eigenvalues satisfy the relationships
\[
\begin{aligned}
& \left(A-\lambda_{2} I\right) v_{4}=v_{3} \\
& \left(A-\lambda_{1} I\right) v_{2}=v_{1}
\end{aligned}
\]

\section*{Singular Value Decomposition}

Only the variable-precision numeric computation of the singular value decomposition is available in the tool box. One reason for this is that the formulas that result from symbolic computation are usually too long and complicated to be of much use. If A is a symbolic matrix of floating-point or variable-precision numbers, then
```

S = svd(A)

```
computes the singular values of \(A\) to an accuracy determined by the current setting of digits.And
\[
[U, S, V]=\operatorname{svd}(A) ;
\]
produces two orthogonal matrices, \(U\) and \(V\), and a diagonal matrix, \(S\), so that
\[
A=U * S * V^{\prime} ;
\]

Let's look at then-by-n matrixa with elements defined by
```

A(i,j) = 1/(i-j+1/2)

```

For \(n=5\), the matrix is
\begin{tabular}{rrrrr}
{\([2\)} & -2 & \(-2 / 3\) & \(-2 / 5\) & \(-2 / 7]\) \\
{\([2 / 3\)} & 2 & -2 & \(-2 / 3\) & \(-2 / 5]\) \\
{\([2 / 5\)} & \(2 / 3\) & 2 & -2 & \(-2 / 3]\) \\
{\([2 / 7\)} & \(2 / 5\) & \(2 / 3\) & 2 & \(-2]\) \\
{\([2 / 9\)} & \(2 / 7\) & \(2 / 5\) & \(2 / 3\) & \(2]\)
\end{tabular}

It turns out many of the singular values of these matrices are close to \(\pi\).
The most obvious way of generating this matrix is
```

for i=1:n
for j=1:n
A(i,j) = sym(1/(i-j +1/2));
end
end

```

The most efficient way to generate the matrix is
```

[J,l] = meshgrid(1:n);
A = sym(1./(l-J+1/2));

```

Since the elements of A are the ratios of small integers, vpa(A) produces a variable-precision representation, which is accuratetodigits precision. Hence
```

S = svd(vpa(A))

```
computes the desired singular values to full accuracy. With \(n=16\) and digits (30), the result is
```

S =
[1.20968137605668985332455685357]
[2.69162158686066606774782763594]
[3.07790297231119748658424727354]
[3.13504054399744654843898901261]
[3.14106044663470063805218371924]
[3.14155754359918083691050658260]
[3.14159075458605848728982577119]
[3.14159256925492306470284863102]
[3.14159265052654880815569479613]
[3.14159265349961053143856838564]
[3.14159265358767361712392612384]
[3.14159265358975439206849907220]
[3.14159265358979270342635559051]
[3.14159265358979323325290142781]
[3.14159265358979323843066846712]
[3.14159265358979323846255035974]

```

There are two ways to compares with pi , the floating-point representation of \(\pi\). In the vector below, the first element is computed by subtraction with variable-precision arithmetic and then converted to a double. The second element is computed with floating-point arithmetic.
```

format short e
[double(pi*ones(16,1)-S) pi-double(S)]

```

The results are
\begin{tabular}{ll}
\(1.9319 \mathrm{e}+00\) & \(1.9319 \mathrm{e}+00\) \\
\(4.4997 \mathrm{e}-01\) & \(4.4997 \mathrm{e}-01\) \\
\(6.3690 \mathrm{e}-02\) & \(6.3690 \mathrm{e}-02\) \\
\(6.5521 \mathrm{e}-03\) & \(6.5521 \mathrm{e}-03\) \\
\(5.3221 \mathrm{e}-04\) & \(5.3221 \mathrm{e}-04\) \\
\(3.5110 \mathrm{e}-05\) & \(3.5110 \mathrm{e}-05\) \\
\(1.8990 \mathrm{e}-06\) & \(1.8990 \mathrm{e}-06\)
\end{tabular}
\begin{tabular}{rr}
\(8.4335 \mathrm{e}-08\) & \(8.4335 \mathrm{e}-08\) \\
\(3.0632 \mathrm{e}-09\) & \(3.0632 \mathrm{e}-09\) \\
\(9.0183 \mathrm{e}-11\) & \(9.0183 \mathrm{e}-11\) \\
\(2.1196 \mathrm{e}-12\) & \(2.1196 \mathrm{e}-12\) \\
\(3.8846 \mathrm{e}-14\) & \(3.8636 \mathrm{e}-14\) \\
\(5.3504 \mathrm{e}-16\) & \(4.4409 \mathrm{e}-16\) \\
\(5.2097 \mathrm{e}-18\) & 0 \\
\(3.1975 \mathrm{e}-20\) & 0 \\
\(9.3024 \mathrm{e}-23\) & 0
\end{tabular}

Since the relative accuracy of pi ispi*eps, which is \(6.9757 \mathrm{e}-16\), either column confirms our suspicion that four of the singular values of the 16-by-16 example equal \(\pi\) to floating-point accuracy.

\section*{Eigenvalue Trajectories}

This example applies several numeric, symbolic, and graphic techniques to study the behavior of matrix eigenvalues as a parameter in the matrix is varied. This particular setting involves numerical analysis and perturbation theory, but the techniques illustrated are more widely applicable.

In this example, we consider a 3-by-3 matrix A whose eigenvalues are 1, 2, 3. First, we perturb \(A\) by another matrix \(E\) and parameter \(t: A \rightarrow A+t E\). Ast increases from 0 to \(10^{-6}\), the eigenvalues \(\lambda_{1}=1, \lambda_{2}=2, \lambda_{3}=3\) change to \(\lambda_{1}{ }^{\prime} \approx 1.5596+0.2726 \mathrm{i}, \lambda_{2}{ }^{\prime} \approx 1.5596-0.2726 \mathrm{i}, \lambda_{3}{ }^{\prime} \approx 2.8808\).


This, in turn, means that for some value of \(t=\tau, 0<\tau<10^{-6}\), the perturbed matrix \(A(t)=A+t E\) has a double eigenvalue \(\lambda_{1}=\lambda_{2}\).
Let's find the value of \(t\), called \(\tau\), where this happens.
The starting point is a MATLAB test example, known as gallery(3).
```

A = gallery(3)
A =
-149 -50 -154
537 180 546
.27 .9 . 25

```

This is an example of a matrix whose eigenvalues are sensitive to the effects of roundoff errors introduced during their computation. The actual computed eigenvalues may vary from one machine to another, but on a typical workstation, the statements
```

 format long
 e = eig(A)
 produce
e =
0.99999999999642
2.00000000000579
2.999999999999780

```

Of course, the example was created sothat its eigenvalues are actually 1, 2, and 3. Note that three or four digits have been lost to roundoff. This can be easily verified with the tool box. The statements
```

B = sym(A);
e = eig(B)'
p=poly(B)
f = factor(p)

```
produce
e =
\([1,2,3]\)
\(p\) =
\(x^{\wedge} 3 \cdot 6 * x^{\wedge} 2+11 * x-6\)
\(f=\)
\((x-1) *(x-2) *(x-3)\)
Are the eigenvalues sensitive to the perturbations caused by roundoff error because they are "close together"? Ordinarily, the values 1, 2, and 3 would be regarded as "well separated." But, in this case, the separation should beviewed on the scale of the original matrix. If A were replaced by A/ 1000 , the eigenvalues, which would be .001, .002, .003, would "seem" to be closer together.

But eigenvalue sensitivity is moresubtlethan just "closeness." With a carefully chosen perturbation of the matrix, it is possible to make two of its eigenvalues coalesce into an actual double root that is extremely sensitive to roundoff and other errors.

One good perturbation direction can be obtained from the outer product of the left and right eigenvectors associated with the most sensitive eigenvalue. The following statement creates
```

E = [130, - 390, 0; 43,-129,0;133, -399,0]

```
the perturbation matrix
```

E =
130-390 0
43-129 0
133-399 0

```

The perturbation can now be expressed in terms of a single, scalar parameter \(t\). The statements
```

syms x t
A=A+t*E

```
replace A with the symbolic representation of its perturbation.
```

A =
[-149+130*t, - 50-390*t, - 154]
[537+43*t, 180-129*t, 546]
[- 27+133*t, - 9- 399*t, - 25]

```

Computing the characteristic polynomial of this new A
```

p=poly(A)

```
gives
```

p =
x^3-6**^2 +11*x-t*x^2+492512*t*x-6-1221271*t

```

Prettyprinting
```

pretty(collect(p,x))

```
shows more clearly that \(p\) is a cubic in \(x\) whose coefficients vary linearly with \(t\).
```

3
x + (- t - 6) x + (492512 t + 11) x - 6 - 1221271 t

```

It turns out that when \(t\) is varied over a very small interval, from 0 to \(1.0 \mathrm{e}-6\), the desired double root appears. This can best be seen graphically. The first
figure shows plots of \(p\), considered as a function of \(x\), for three different values of \(t\) : \(t=0, t=0.5 e-6\), and \(t=1.0 \mathrm{e}-6\). For each value, the eigenvalues are computed numerically and also plotted.
```

x = . 8:. 01:3.2;
for k = 0:2
c = sym2poly(subs(p,t,k*0.5e-6));
y = polyval(c,x);
| ambda = eig(double(subs(A,t,k*0.5e-6)));
subplot(3,1,3-k)
plot(x,y,' -', x, 0*x,':', I a mbda, 0*| a mbda,' O')
axis([.8 3.2 -.5 .5])
text(2.25,.35,['t = ' num2str(k*0.5e-6)]);
end

```




The bottom subplot shows the unperturbed polynomial, with its three roots at 1,2 , and 3 . The middle subplot shows the first two roots approaching each
other. In the top subplot, these two roots have become complex and only one real root remains.

The next statements compute and display the actual eigenvalues
```

e = eig(A);
pretty(e)

```
showing that e(2) ande(3) form a complex conjugate pair.


Next, the symbolic representations of the three eigenvalues are evaluated at many values of \(t\)
```

tvals=(2:-.02:0)'*1.e-6;
r=size(tvals,1);
c = size(e, l);
| ambda = zeros(r,c);
for k = 1:c
| ambda(:, k) = double(subs(e(k),t,tvals));
end

```
```

plot(lambda,tvals)
x|abel('\lambda'); ylabel('t');
title('Eigenvalue Transition')

```
to produce a plot of their trajectories.


Abovet \(=0.8 e^{-6}\), the graphs of two of the eigenvalues intersect, while below \(t=0.8 e^{-6}\), two real roots become a complex conjugate pair. What is the precise value of \(t\) that marks this transition? Let \(\tau\) denote this value of \(t\).

One way to find \(\tau\) is based on the fact that, at a double root, both the function and its derivative must vanish. This results in two polynomial equations to be solved for two unknowns. The statement
```

sol= solve(p,diff(p,'x'))

```
solves the pair of algebraic equations \(p=0\) and \(d p / d x=0\) and produces
sol =
t: [ \(4 \times 1\) sym]
\(x:[4 \times 1\) sym]
Find \(\tau\) now by
```

tau = double(sol.t(2))

```
which reveals that the second element of \(s o l, t\) is the desired value of \(\tau\).
```

format short

```
tau =
    7.8379e-07

Therefore, the second element of \(\mathrm{sol}, \mathrm{x}\)
```

sigma= double(sol.x(2))

```
is the double eigenvalue
sigma \(=\)
1. 5476

Let's verify that this value of \(\tau\) does indeed produce a double eigenvalue at \(\sigma=1.5476\). To achieve this, substitute \(\tau\) for t in the perturbed matrix \(A(t)=A+t E\) and find the eigenvalues of \(A(t)\). That is,
\(e=\) eig(double(subs \((A, t, t a u)))\)
e =
1. 5476
1. 5476
2. 9047
confirms that \(\sigma=1.5476\) is a double eigenvalue of \(A(t)\) for \(t=7.8379 \mathrm{e}-07\).

\section*{Solving Equations}

\section*{Solving Algebraic Equations}

If \(s\) is a symbolic expression,
solve(S)
attempts to find values of the symbolic variable in \(s\) (as determined by findsym) for which \(s\) is zero. For example,
syms a b c \(x\)
\(S=a^{*} x^{\wedge} 2+b^{*} x+c ;\)
solve(S)
uses the familiar quadratic formula to produce
```

ans =
[1/2/a*(-b+(b^2-4*a*c)^(1/2))]
[1/2/a*(-b-(b^2-4*a*c)^(1/2))]

```

This is a symbolic vector whose elements are the two solutions.
If you want to solve for a specific variable, you must specify that variable as an additional argument. For example, if you want to solves for \(b\), use the command
```

b=solve(S,b)

```
which returns
```

b =
-(a* (^^2+c)/x

```

N ote that these examples assume equations of the form \(f(x)=0\). If you need to solve equations of the form \(f(x)=q(x)\), you must use quoted strings. In particular, the command
```

s = solve('cos(2*x)+sin(x)=1')

```
returns a vector with four solutions.
```

s =
[0]
[pi]
[1/6*pi]
[5/6*pi]

```

\section*{Several Algebraic Equations}

Now let's look at systems of equations. Suppose we have the system
\[
\begin{aligned}
& x^{2} y^{2}=0 \\
& x-\frac{y}{2}=\alpha
\end{aligned}
\]
and we want to solve for \(x\) and \(y\). First create the necessary symbolic objects.
```

syms x y alpha

```

There are several ways to address the output of sol ve. One is to use a two-output call
```

[x,y] = solve(x^2*y^2, x-y/ 2-alpha)

```
which returns
```

x =
[0]
[0]
[a|pha]
[a|pha]
y =
[- 2*alpha]
[- 2*alpha]
[0]

```

Consequently, the solution vector
\[
v=[x, y]
\]
appears to have redundant components. This is due to the first equation \(x^{2} y^{2}=0\), which has two solutions in \(x\) and \(y: x= \pm 0, y= \pm 0\). Changing the equations to
```

eqs1 = 'x^2*y^^2=1, x-y/2-alpha'
[x,y] = solve(eqs1)

```
produces four distinct solutions.
```

x =
[1/2*alpha+1/2*(alpha^2+2)^(1/2)]
[1/2*alpha-1/2*(alpha^2+2)^(1/2)]
[1/2*alpha+1/2*(alpha^2-2)^(1/2)]
[1/2*alpha-1/2*(alpha^2-2)^(1/2)]

```
```

y =
[-alpha+(alpha^2+2)^(1/2)]
[-alpha-(alpha^2+2)^(1/2)]
[-alpha+(alpha^2-2)^(1/2)]
[-alpha-(alpha^2-2)^(1/2)]

```

Since we did not specify the dependent variables, sol ve uses findsym to determine the variables.
This way of assigning output froms ol ve is quitesuccessful for "small"systems. Plainly, if we had, say, a 10 -by-10 system of equations, typing
```

[x1,x2,x3,x4,x5,x6,x7,x8,x9,x10] = solve(···)

```
is both awkward and time consuming. To circumvent this difficulty, s ol ve can return a structure whose fields are the solutions. In particular, consider the system \(u^{\wedge} 2-v^{\wedge} 2=a^{\wedge} 2, u+v=1, a^{\wedge} 2 \cdot 2 * a=3\). The command
```

 S = solve('u^2-v^2 = a^2',''u + v = 1','a^2 2*a = 3')
    ```
returns
\(S=\)
\begin{tabular}{lll}
\(a:\) & {\(\left[\begin{array}{ll}2 \times 1 & \text { sym }\end{array}\right]\)} \\
\(u:\) & {\([2 \times 1\)} & sym \(]\) \\
\(v:\) & {\(\left[\begin{array}{ll}2 \times 1 & \text { sym }\end{array}\right]\)}
\end{tabular}

The solutions for a reside in the "a-field" of \(S\). That is,
S.a
produces
ans =
[ - 1]
[ 3]
Similar comments apply to the solutions for \(u\) and \(v\). The structures can now be manipulated by field and index to access a particular portion of the solution. F or example, if we want to examine the second solution, we can use the following statement
```

s2 = [S.a(2), S.u(2), S.v(2)]

```
to extract the second component of each field.
```

s2 =
[3, 5, .4]

```

The following statement
```

M = [S.a, S.u, S.v]

```
creates the solution matrix \(M\)
```

M =
[-1, 1, 0]
[3, 5, .4]

```
whose rows comprise the distinct solutions of the system.
Linear systems of simultaneous equations can also be solved using matrix division. For example,
```

clear u v x y
syms u v x y
S = solve(x+2*y-u, 4*x+5*y-v);
sol = [S.x;S.y]

```
and
```

 A = [1 2; 4 5];
 b = [u; v];
 z=A\b
 result in
sol=
[- 5/ 3*u+2/ 3*v]
[4/3*u-1/3*v]
z =
[-5/3*u+2/3*v]
[4/3*u-1/3*v]

```

Thus s and \(z\) produce the same solution, although the results are assigned to different variables.

\section*{Single Differential Equation}

The function dsol ve computes symbolic solutions to ordinary differential equations. The equations are specified by symbolic expressions containing the letter D to denote differentiation. The symbols D2, D3,.. DN, correspond to the second, third, ..., Nth derivative, respectively. Thus, D2 y is the Symbolic Math Tool box equivalent of \(d^{2} y / d t^{2}\). The dependent variables arethose preceded by \(D\) and the default independent variable is \(t\). Note that names of symbolic variables should not contain \(D\). The independent variable can be changed from t to some other symbolic variable by including that variable as the last input argument.

Initial conditions can be specified by additional equations. If initial conditions are not specified, the solutions contain constants of integration, \(\mathrm{C1}, \mathrm{C} 2\), etc.
The output fromdsol ve parallels the output fromsolve. That is, you can call dsol ve with the number of output variables equal to the number of dependent variables or place the output in a structure whose fields contain the solutions of the differential equations.

\section*{Example 1}

The following call to dsol ve
dsolve('Dy=1+y^2')
uses y as the dependent variable and \(t\) as the default independent variable. The output of this command is
```

ans=
tan(t+Cl)

```

To specify an initial condition, use
```

y = dsolve('Dy=1 +y^2','y(0)=1')

```

This produces
```

y =
tan(t+1/4*pi)

```

N otice that \(y\) is in the MATLAB workspace, but the independent variablet is not. Thus, the command \(\operatorname{dif} f(y, t)\) returns an error. To placet in the workspace, typesyms t.

\section*{Example 2}

Nonlinear equations may havemultiplesolutions, even when initial conditions are given.
```

x = dsolve('(Dx)^2 +\mp@subsup{x}{}{\wedge}2=1','x(0)=0')

```
results in
\(\mathrm{x}=\)
[-sin(t)]
[ \(\sin (t)]\)

\section*{Example 3}

Here is a second order differential equation with two initial conditions. The commands
```

y=dsolve('D2y=cos(2*x)}-\mp@subsup{y}{}{\prime},'y(0)=1','Dy(0)=0',' ' ' ')
simplify(y)

```
produce
```

y =
-2/3*}\operatorname{cos}(x\mp@subsup{)}{}{\wedge}2+1/3+4/3*\operatorname{cos}(x

```

The key issues in this example are the order of the equation and the initial conditions. To solve the ordinary differential equation
\[
\begin{aligned}
& \frac{d^{3} \mathrm{u}}{d \mathrm{x}^{3}}=\mathrm{u} \\
& \mathrm{u}(0)=1, \mathrm{u}^{\prime}(0)=-1, \mathrm{u}^{\prime \prime}(0)=\pi
\end{aligned}
\]
simply type
\[
u=\text { dsolve('D3u=u','u(0)=1','Du(0)=-1','D2u(0) = pi','x') }
\]

UseD3u to represent \(d^{3} u / d x^{3}\) and \(D 2 u(0)\) for \(u^{\prime \prime}(0)\).

\section*{Several Differential Equations}

Thefunction dsol ve can also handle several ordinary differential equations in several variables, with or without initial conditions. For example, here is a pair of linear, first order equations.
```

S = dsolve('Df = 3*f +4*g',' 'Dg = - 4*f +3*g')

```

The computed solutions arereturned in the structures. Y ou can determine the values of \(f\) and \(g\) by typing
```

f = S.f
f =
exp(3*t)*(cos(4*t)*C1+sin(4*t)*C2)
g = S.g
g =

- exp(3*t)*(sin(4*t)*C1-\operatorname{cos}(4*t)*C2)

```

If you prefer to recover \(f\) and \(g\) directly as well as include initial conditions, type
```

[f,g]= dsolve('Df=3*f+4*g, Dg =- 4*f+3*g', 'f(0)=0, g(0)=1')
f =
exp(3*t)*sin(4*t)
g =
exp(3*t)*\operatorname{cos}(4*t)

```

This table details someexamples and Symbolic M ath Tool box syntax. N ote that the final entry in the table is the Airy differential equation whose solution is referred to as the Airy function.
\begin{tabular}{|c|c|}
\hline Differential Equation & MATLAB Command \\
\hline \[
\begin{aligned}
& \frac{d \mathrm{y}}{d \mathrm{t}}+4 \mathrm{y}(\mathrm{t})=\mathrm{e}^{-\mathrm{t}} \\
& \mathrm{y}(0)=1
\end{aligned}
\] & \[
\begin{aligned}
& y=d s o l v e(' D y+4 * y=\exp (-t))^{\prime} \\
& \left(y(0)=1^{\prime}\right)
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \frac{d^{2} \mathrm{y}}{d \mathrm{x}^{2}}+4 \mathrm{y}(\mathrm{x})=\mathrm{e}^{-2 \mathrm{x}} \\
& \mathrm{y}(0)=0, \mathrm{y}(\pi)=0
\end{aligned}
\] & \[
\begin{aligned}
& y=\text { dsolve('D2y+4*y }=\exp (-2 * x)^{\prime}, \\
& \left.y(0)=0^{\prime}, ' y(p i)=0 '^{\prime}, \quad x^{\prime}\right)
\end{aligned}
\] \\
\hline \begin{tabular}{l}
\[
\begin{aligned}
& \frac{d^{2} \mathrm{y}}{d \mathrm{x}^{2}}=\mathrm{xy}(\mathrm{x}) \\
& \mathrm{y}(0)=0, \mathrm{y}(3)=\frac{1}{\pi} \mathrm{~K}_{\frac{1}{3}}(2 \sqrt{3})
\end{aligned}
\] \\
(The Airy Equation)
\end{tabular} & \[
\begin{aligned}
& y=\text { dsolve('D2y }=x^{*} y^{\prime},{ }^{\prime} y(0)=0{ }^{\prime}, \\
& y(3)=\text { besselk(1/3, } 2 * \text { sqrt(3))/pi', } \\
& \left.x^{\prime}\right)
\end{aligned}
\] \\
\hline
\end{tabular}

TheAiry function plays an important role in the mathematical modeling of the dispersion of water waves.

\section*{MATLAB Quick Reference}
Introduction ..... A-2
General Purpose Commands ..... A-3
Operators and Special Characters ..... A-5
Logical Functions ..... A-5
Language Constructs and Debugging ..... A-5
Elementary Matrices and Matrix Manipulation ..... A-7
Specialized Matrices ..... A-8
Elementary Math Functions ..... A-8
Specialized Math Functions ..... A-9
Coordinate System Conversion ..... A-10
Matrix Functions - Numerical Linear Algebra ..... A-10
Data Analysis and Fourier Transform Functions ..... A-11
Polynomial and Interpolation Functions ..... A-12
Function Functions - Nonlinear Numerical Methods .....  A-13
Sparse Matrix F unctions ..... A-14
Sound Processing Functions ..... A-15
Character String Functions ..... A-16
File I/O F unctions ..... A-17
Bitwise Functions ..... A-17
Structure Functions ..... A-18
MATLAB Object Functions ..... A-18
MATLAB Interface to J ava F unctions ..... A-18
Cell Array Functions ..... A-19
Multidimensional Array Functions ..... A-19
Data Visualization .....  A-19
Graphical User Interfaces ..... A-24
Serial Port I/O ..... A-25

\section*{Introduction}

This appendix lists the MATLAB functions as they are grouped in Help by subject. Each table contains the function names and brief descriptions. For complete information about any of these functions, refer to Help and either:
- Select the function from the MATLAB Function Reference (Functions by Category or Alphabetical List of Functions), or
- From the Search tab in the Help Navigator, select F unction Name as Search type, type the function name in the Search for field, and click Go.

Note If you are viewing this book from Help, you can click on any function name and jump directly to the corresponding MATLAB function page.

\section*{General Purpose Commands}

This set of functions lets you start and stop MATLAB, work with files and the operating system, control the command window, and manage the environment, variables, and the workspace.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Managing Commands and Functions} \\
\hline addpath & Add directories to MATLAB's search path \\
\hline doc & Display HTML documentation in Help browser \\
\hline docopt & Display location of help file directory for UNIX platforms \\
\hline genpath & Generate a path string \\
\hline help & Display M-file help for MATLAB functions in the Command Window \\
\hline helpbrowser & Display Help browser for access to all MathWorks online help \\
\hline helpdesk & Display Help browser \\
\hline helpwin & Display M-file help and provide access to M-file help for all functions \\
\hline l asterr & Last error message \\
\hline I astwarn & Last warning message \\
\hline license & Show MATLAB license number \\
\hline lookfor & Search for specified keyword in M-file help entries \\
\hline partialpath & Partial pathname \\
\hline path & Control MATLAB's directory search path \\
\hline pathtool & Open the GUI for viewing and modifying MATLAB's path \\
\hline profile & Start the M-file profiler, a utility for debugging and optimizing code \\
\hline profreport & Generate a profile report \\
\hline
\end{tabular}
\begin{tabular}{l|l}
\hline Managing Commands and Functions (Continued) \\
\hline rehash & \begin{tabular}{l} 
Refresh function and file system \\
caches
\end{tabular} \\
\hline rmpat h & \begin{tabular}{l} 
Remove directories from \\
MATLAB's search path
\end{tabular} \\
\hline support & \begin{tabular}{l} 
Open MathWorks Technical \\
Support Web page
\end{tabular} \\
\hline type & \begin{tabular}{l} 
List file
\end{tabular} \\
\hline ver & \begin{tabular}{l} 
Display version information for \\
MATLAB, Simulink, and \\
tool boxes
\end{tabular} \\
\hline version & \begin{tabular}{l} 
Get MATLAB version number
\end{tabular} \\
\hline web & \begin{tabular}{l} 
Point Help browser or Web \\
browser at file or Web site
\end{tabular} \\
\hline what & \begin{tabular}{l} 
List MATLAB-specific files in \\
current directory
\end{tabular} \\
\hline what snew & \begin{tabular}{l} 
Display README files for \\
MATLAB and tool boxes
\end{tabular} \\
\hline which & Locate functions and files \\
\hline
\end{tabular}

Managing Variables and the Workspace
\begin{tabular}{l|l}
\hline clear & \begin{tabular}{l} 
Remove items from the \\
workspace
\end{tabular} \\
\hline disp & Display text or array \\
\hline I engt L & Length of vector \\
\hline load & Retrieve variables from disk \\
\hline memory & Help for memory limitations \\
\hline ml ock & Prevent M-file clearing \\
\hline munlock & Allow M-file dearing \\
\hline openvar & \begin{tabular}{l} 
Open workspace variable in \\
Array Editor for graphical \\
editing
\end{tabular} \\
\hline pack & \begin{tabular}{l} 
Consolidate workspace memory \\
\hline save
\end{tabular} \begin{tabular}{l} 
Save workspace variables on \\
disk
\end{tabular} \\
\hline saveas & \begin{tabular}{l} 
Save figure or model using \\
specified format
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{l|l}
\hline \multicolumn{2}{l}{\begin{tabular}{l} 
Managing Variables and the Workspace \\
(Continued)
\end{tabular}} \\
\hline size & \begin{tabular}{l} 
Array dimensions \\
who, whos \\
workspace
\end{tabular} \\
\hline workspace & \begin{tabular}{l} 
Display the Workspace browser, \\
a GUI for managing the \\
workspace
\end{tabular} \\
\hline Controlling the Command Window \\
\hline cl c & \begin{tabular}{l} 
Clear Command Window
\end{tabular} \\
\hline echo & \begin{tabular}{l} 
Echo M-files during execution
\end{tabular} \\
\hline format & \begin{tabular}{l} 
Control the display format for \\
output
\end{tabular} \\
\hline home \\
of Command Window
\end{tabular}

\section*{Working with Files and the Operating Environment (Continued)}
\begin{tabular}{|c|c|}
\hline filebrowser & Display Current Directory browser, for viewing files \\
\hline fullfile & Build full filename from parts \\
\hline info & Display contact information or tool box Readme files \\
\hline i mm m & Functions in memory \\
\hline 1 s & List directory on UNIX \\
\hline matlabroot & Get root directory of MATLAB installation \\
\hline mkdi r & Make new directory \\
\hline open & Open files based on extension \\
\hline pwd & Display current directory \\
\hline tempdir & Return the name of the system's temporary directory \\
\hline temp name & Unique name for temporary file \\
\hline undocheckout & Undo previous checkout from source control system \\
\hline unix & Execute a UNIX command and return the result \\
\hline ! & Execute operating system command \\
\hline
\end{tabular}
\begin{tabular}{ll}
\hline \multicolumn{2}{l}{ Starting and Quitting MATLAB } \\
\hline finish & MATLAB termination M-file \\
\hline exit & Terminate MATLAB \\
\hline matlab & \begin{tabular}{l} 
Start MATLAB (UNIX systems \\
only)
\end{tabular} \\
\hline matlabrc & MATLAB startup M-file \\
\hline quit & Terminate MATLAB \\
\hline startup & MATLAB startup M-file \\
\hline
\end{tabular}

\section*{Operators and Special Characters}

Thesearetheactual operators you usetoenter and manipulate data, for example, matrix multiplication, array multiplication, and line continuation.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Operators and Special Characters} \\
\hline + & Plus \\
\hline - & Minus \\
\hline * & M atrix multiplication \\
\hline . \({ }\) & Array multiplication \\
\hline \(\wedge\) & Matrix power \\
\hline -^ & Array power \\
\hline kron & Kronecker tensor product \\
\hline 1 & Backslash or left division \\
\hline 1 & Slash or right division \\
\hline . 1 and . 1 & Array division, right and left \\
\hline : & Colon \\
\hline ( ) & Parentheses \\
\hline [1] & Brackets \\
\hline \{\} & Curly braces \\
\hline . & Decimal point \\
\hline . \(\cdot\) & Continuation \\
\hline , & Comma \\
\hline ; & Semicolon \\
\hline \% & Comment \\
\hline ! & Exdamation point \\
\hline ' & Transpose and quote \\
\hline . ' & Nonconjugated transpose \\
\hline \(=\) & Assignment \\
\hline = & Equality \\
\hline < > & Relational operators \\
\hline \& & Logical AND \\
\hline | & Logical OR \\
\hline ~ & Logical NOT \\
\hline xor & Logical EXCLUSIVE OR \\
\hline
\end{tabular}

\section*{Logical Functions}

This set of functions performs logical operations such as checking if a file or variable exists and testing if all elements in an array are nonzero. "Operators and Special Characters" contains other operators that perform logical operations.
\begin{tabular}{ll}
\hline Logical Functions & \\
\hline all & \begin{tabular}{l} 
Test to determine if all elements \\
are nonzero
\end{tabular} \\
\hline any & Test for any nonzeros \\
\hline exist & \begin{tabular}{l} 
Check if a variable or file exists \\
find indices and values of \\
nonzero elements
\end{tabular} \\
\hline ind & Detect state
\end{tabular}

Language Constructs and Debugging
These functions let you work with MATLAB as a programming language. For example, you can control program flow, define global variables, perform interactive input, and debug your code.

\section*{MATLAB as a Programming Language}
\begin{tabular}{ll}
\hline builtin & \begin{tabular}{l} 
Execute builtin function from \\
overloaded method
\end{tabular} \\
\hline eval & \begin{tabular}{l} 
Interpret strings containing \\
MATLAB expressions
\end{tabular} \\
\hline evalc & \begin{tabular}{l} 
Evaluate MATLAB expression \\
with capture
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{MATLAB as a Programming Language (Continued)} \\
\hline evalin & Evaluate expression in workspace \\
\hline feval & Function evaluation \\
\hline function & Function M-files \\
\hline global & Define global variables \\
\hline nargchk & Check number of input arguments \\
\hline persistent & Define persistent variable \\
\hline script & Script M-files \\
\hline \multicolumn{2}{|l|}{Control Flow} \\
\hline break & Terminate execution of \(f\) or loop or while loop \\
\hline case & Case switch \\
\hline catch & Begincatch block \\
\hline continue & Pass control to the next iteration of for or while loop \\
\hline else & Conditionally execute statements \\
\hline elseif & Conditionally execute statements \\
\hline end & Terminate for, while, switch, try, andif statements or indicate last index \\
\hline error & Display error messages \\
\hline for & Repeat statements a specific number of times \\
\hline if & Conditionally execute statements \\
\hline otherwise & Default part of s witch statement \\
\hline return & Return to the invoking function \\
\hline switch & Switch among several cases based on expression \\
\hline try & Begintry block \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Control Flow (Continued)} \\
\hline warning & Display warning message \\
\hline while & Repeat statements an indefinite number of times \\
\hline \multicolumn{2}{|l|}{Interactive Input} \\
\hline input & Request user input \\
\hline keyboard & Invoke thekeyboard in an M-file \\
\hline menu & Generate a menu of choices for user input \\
\hline pause & Halt execution temporarily \\
\hline \multicolumn{2}{|l|}{Object-Oriented Programming} \\
\hline class & Create object or return class of object \\
\hline double & Convert to double precision \\
\hline inferiorto & Inferior class relationship \\
\hline inline & Construct an inline object \\
\hline int 8, int 16, int 32 & Convert to signed integer \\
\hline isa & Detect an object of a given class \\
\hline loadobj & Extends the load function for user objects \\
\hline saveobj & Save filter for objects \\
\hline single & Convert to single precision \\
\hline superiorto & Superior class relationship \\
\hline \[
\begin{aligned}
& \text { uint 8, uint 16, } \\
& \text { uint } 32
\end{aligned}
\] & Convert to unsigned integer \\
\hline \multicolumn{2}{|l|}{Debugging} \\
\hline dbclear & Clear breakpoints \\
\hline dbcont & Resume execution \\
\hline dbdown & Change local workspace context \\
\hline dbmex & Enable MEX-file debugging \\
\hline dbquit & Quit debug mode \\
\hline dbstack & Display function call stack \\
\hline dbstatus & List all breakpoints \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Debugging (Continued)} \\
\hline dbstep & Execute one or more lines from a breakpoint \\
\hline dbstop & Set breakpoints in an M-file function \\
\hline dbtype & List M-file with line numbers \\
\hline dbup & Change local workspace context \\
\hline \multicolumn{2}{|l|}{Function Handles} \\
\hline function_handle & MATLAB data type that is a handle to a function \\
\hline functions & Return information about a function handle \\
\hline func2str & Constructs a function name string from a function handle \\
\hline str2func & Constructs a function handle from a function name string \\
\hline \multicolumn{2}{|l|}{Elementary Matrices and Matrix Manipulation} \\
\hline \multicolumn{2}{|l|}{Using these functions you can manipulate matrices, and access time, date, special variables, and constants, functions.} \\
\hline \multicolumn{2}{|l|}{Elementary Matrices and Arrays} \\
\hline blkdiag & Construct a block diagonal matrix from input arguments \\
\hline eye & Identity matrix \\
\hline linspace & Generate linearly spaced vectors \\
\hline Iogspace & Generate logarithmi cally spaced vectors \\
\hline numel & Number of elements in a matrix or cell array \\
\hline ones & Create an array of all ones \\
\hline rand & Uniformly distributed random numbers and arrays \\
\hline randn & Normally distributed random numbers and arrays \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Elementary Matrices and Arrays (Continued)} \\
\hline zeros & Create an array of all zeros \\
\hline (colon) & Regularly spaced vector \\
\hline \multicolumn{2}{|l|}{Special Variables and Constants} \\
\hline ans & The most recent answer \\
\hline computer & Identify the computer on which MATLAB is running \\
\hline eps & Floating-point relative accuracy \\
\hline i & Imaginary unit \\
\hline Inf & Infinity \\
\hline inputname & Input argument name \\
\hline j & Imaginary unit \\
\hline NaN & Not-a-Number \\
\hline nargin, nargout & Number of function arguments \\
\hline nargoutchk & Validate number of output arguments \\
\hline pi & Ratio of a circle's circumference to its diameter \\
\hline real max & Largest positive floating-point number \\
\hline realmin & Smallest positive floating-point number \\
\hline \begin{tabular}{l}
varargin. \\
varargout
\end{tabular} & Pass or return variable numbers of arguments \\
\hline \multicolumn{2}{|l|}{Time and Dates} \\
\hline calendar & Calendar \\
\hline clock & Current time as a date vector \\
\hline cputime & Elapsed CPU time \\
\hline date & Current date string \\
\hline datenum & Serial date number \\
\hline datestr & Date string format \\
\hline datevec & Date components \\
\hline eomday & End of month \\
\hline etime & Elapsed time \\
\hline now & Current date and time \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Time and Dates (Continued)} \\
\hline tic, toc & Stopwatch timer \\
\hline weekday & Day of the week \\
\hline \multicolumn{2}{|l|}{Matrix Manipulation} \\
\hline cat & Concatenate arrays \\
\hline diag & Diagonal matrices and diagonals of a matrix \\
\hline fliplr & Flip matrices left-right \\
\hline flipud & Flip matrices up-down \\
\hline repmat & Replicate and tile an array \\
\hline reshape & Reshape array \\
\hline rot90 & Rotate matrix 90 degrees \\
\hline tril & Lower triangular part of a matrix \\
\hline triu & U pper triangular part of a matrix \\
\hline : (colon) & Index into array, rearrange array \\
\hline \multicolumn{2}{|l|}{Vector Functions} \\
\hline cross & Vector cross product \\
\hline dot & Vector dot product \\
\hline intersect & Set intersection of two vectors \\
\hline is member & Detect members of a set \\
\hline setdiff & Return the set difference of two vectors \\
\hline setxor & Set exclusive or of two vectors \\
\hline union & Set union of two vectors \\
\hline uni que & Unique elements of a vector \\
\hline
\end{tabular}

\section*{Specialized Matrices}

Thesefunctions let you work with matrices such as Hadamard, Hankel, Hilbert, and magic squares.

\section*{Specialized Matrices}
\begin{tabular}{ll}
\hline compan & Companion matrix \\
\hline gallery & Test matrices \\
\hline hadamard & Hadamard matrix \\
\hline hankel & Hankel matrix \\
\hline hilb & Hilbert matrix \\
\hline invhilb & Inverse of the Hilbert matrix \\
\hline magic & Magic square \\
\hline pascal & Pascal matrix \\
\hline toeplitz & Toeplitz matrix \\
\hline wilkinson & \begin{tabular}{l} 
Wilkinson's eigenvalue test \\
matrix
\end{tabular} \\
\hline
\end{tabular}

\section*{Elementary Math Functions}

These are many of the standard mathematical functions such as trigonometric, hyperbolic, logarithmic, and complex number manipulation.
\begin{tabular}{ll}
\hline Elementary Math Functions \\
\hline abs & \begin{tabular}{l} 
Absolute value and complex \\
magnitude
\end{tabular} \\
\hline acos, acosh & \begin{tabular}{l} 
Inverse cosine and inverse \\
hyperbolic cosine
\end{tabular} \\
\hline acot, acoth & \begin{tabular}{l} 
Inverse cotangent and inverse \\
hyperbolic cotangent
\end{tabular} \\
\hline acsc, acsch & \begin{tabular}{l} 
Inverse cosecant and inverse \\
hyperbolic cosecant
\end{tabular} \\
\hline angle & \begin{tabular}{l} 
Phase angle
\end{tabular} \\
\hline asec, asech & \begin{tabular}{l} 
Inverse secant and inverse \\
hyperbolic secant
\end{tabular} \\
\hline asin, asinh & \begin{tabular}{l} 
Inverse sine and inverse \\
hyperbolic sine
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Elementary Math Functions (Continued)} \\
\hline atan, atanh & Inverse tangent and inverse hyperbolic tangent \\
\hline atan 2 & Four-quadrant inverse tangent \\
\hline ceil & Round toward infinity \\
\hline complex & Construct complex data from real and imaginary components \\
\hline conj & Complex conjugate \\
\hline cos, cosh & Cosine and hyperbolic cosine \\
\hline cot, coth & Cotangent and hyperbolic cotangent \\
\hline csc, csch & Cosecant and hyperbolic cosecant \\
\hline exp & Exponential \\
\hline fix & Round towards zero \\
\hline floor & Round towards minus infinity \\
\hline gcd & Greatest common divisor \\
\hline i mag & Imaginary part of a complex number \\
\hline 1 cm & Least common multiple \\
\hline 109 & Natural logarithm \\
\hline \(\log 2\) & Base 2 logarithm and dissect floating-point numbers into exponent and mantissa \\
\hline \(\log 10\) & Common (base 10) logarithm \\
\hline mod & M odulus (signed remainder after division) \\
\hline nchoosek & Binomial coefficient or all combinations \\
\hline real & Real part of complex number \\
\hline rem & Remainder after division \\
\hline round & Round to nearest integer \\
\hline sec, sech & Secant and hyperbolic secant \\
\hline sign & Signum function \\
\hline sin, sinh & Sine and hyperbolic sine \\
\hline sqrt & Square root \\
\hline tan, tanh & Tangent and hyperbolic tangent \\
\hline
\end{tabular}

\section*{Specialized Math Functions}

This set of functions includes Bessel, elliptic, gamma, factorial, and others.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Specialized Math Functions} \\
\hline airy & Airy functions \\
\hline besselh & Bessel functions of the third kind (Hankel functions) \\
\hline besseli, besselk & Modified Bessel functions \\
\hline besselj, bessely & Bessel functions \\
\hline beta, betainc, betaln & beta, betainc, betaln \\
\hline ellipj & J acobi elliptic functions \\
\hline ellipke & Complete elliptic integrals of the first and second kind \\
\hline erf, erfc, erfcx, erfinv & Error functions \\
\hline expint & Exponential integral \\
\hline factorial & Factorial function \\
\hline ```
gamma, gammainc,
gammaln
``` & Gamma functions \\
\hline legendre & Associated Legendre functions \\
\hline pow2 & Base 2 power and scale floating-point numbers \\
\hline rat, rats & Rational fraction approximation \\
\hline
\end{tabular}

\section*{Coordinate System Conversion}

Using thesefunctions you can transform Cartesian coordinates to polar, cylindrical, or spherical, and vice versa.
\begin{tabular}{ll}
\hline Coordinate System Conversion \\
\hline cart2pol & \begin{tabular}{l}
Transform Cartesian \\
coordinates to polar or \\
cylindrical
\end{tabular} \\
\hline cart2sph & \begin{tabular}{l}
Transform Cartesian \\
coordinates to spherical
\end{tabular} \\
\hline pol 2cart & \begin{tabular}{l}
Transform polar or cylindrical \\
coordinates to Cartesian
\end{tabular} \\
\hline sph2cart & \begin{tabular}{l}
Transform spherical coordinates \\
to Cartesian
\end{tabular} \\
\hline
\end{tabular}

\section*{Matrix Functions - Numerical Linear Algebra}

These functions let you perform matrix analysis including matrix determinant, rank, reduced row echelon form, eigenvalues, and inverses.
\begin{tabular}{ll}
\hline Matrix Analysis & \\
\hline cond & \begin{tabular}{l}
Condition number with respect \\
to inversion
\end{tabular} \\
\hline condeig & \begin{tabular}{l}
Condition number with respect \\
to eigenvalues
\end{tabular} \\
\hline det & Matrix determinant \\
\hline norm & Vector and matrix norms \\
\hline null & Null space of a matrix \\
\hline orth & Range space of a matrix \\
\hline rank & Rank of a matrix \\
\hline rcond & \begin{tabular}{l}
Matrix reciprocal condition \\
number estimate
\end{tabular} \\
\hline rref, rref movie & Reduced row echelon form \\
\hline subspace & Angle between two subspaces \\
\hline trace & Sum of diagonal elements \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Linear Equations} \\
\hline chol & Cholesky factorization \\
\hline inv & Matrix inverse \\
\hline Iscov & Least squares solution in the presence of known covariance \\
\hline 1 u & LU matrix factorization \\
\hline Isquonneg & Nonnegative least squares \\
\hline minres & Minimum Residual Method \\
\hline pinv & Moore-Penrose pseudoinverse of a matrix \\
\hline qr & Orthogonal-triangular decomposition \\
\hline sy mml \(q\) & Symmetric LQ method \\
\hline \multicolumn{2}{|l|}{Eigenvalues and Singular Values} \\
\hline balance & Improve accuracy of computed eigenvalues \\
\hline \(c d f 2 r d f\) & Convert complex diagonal form to real block diagonal form \\
\hline eig & Eigenvalues and eigenvectors \\
\hline gsvd & Generalized singular value decomposition \\
\hline hess & Hessenberg form of a matrix \\
\hline poly & Polynomial with specified roots \\
\hline qz & QZ factorization for generalized eigenvalues \\
\hline rsf \(2 \operatorname{csf}\) & Convert real Schur form to complex Schur form \\
\hline schur & Schur decomposition \\
\hline svd & Singular value decomposition \\
\hline \multicolumn{2}{|l|}{Matrix Functions} \\
\hline expm & Matrix exponential \\
\hline funm & Evaluate general matrix function \\
\hline 10 mm & Matrix logarithm \\
\hline sartm & Matrix square root \\
\hline
\end{tabular}
\begin{tabular}{l|l}
\hline \multicolumn{2}{l}{ Low Level Functions } \\
\hline qrdelete & \begin{tabular}{l}
Delete column from QR \\
factorization
\end{tabular} \\
\hline qrinsert & \begin{tabular}{l}
Insert column in QR \\
factorization
\end{tabular} \\
\hline Data Analysis and Fourier Transform \\
Functions
\end{tabular}

Using the data analysis functions, you can find permutations, prime numbers, mean, median, variance, correlation, and perform convolutions and other standard array manipulations. A set of vector functions lets you operate on vectors to find cross product, union, and other standard vector manipulations. The F ourier transform functions let you perform discrete F ourier transformations in one or more dimensions and their inverses.
\begin{tabular}{ll}
\hline Basic Operations & \\
\hline cumprod & Cumulative product \\
\hline cumsum & Cumulative sum \\
\hline cumtrapz & \begin{tabular}{l}
Cumulative trapezoidal \\
numerical integration
\end{tabular} \\
\hline factor & Prime factors \\
\hline inpolygon & \begin{tabular}{l}
Detect points inside a polygonal \\
region
\end{tabular} \\
\hline max & Maximum elements of an array \\
\hline mean & Average or mean value of arrays \\
\hline median & Median value of arrays \\
\hline min & Minimum elements of an array \\
\hline perms & All possible permutations \\
\hline polyarea & Generate list of primenumbers \\
\hline primes & Product of array elements \\
\hline prod & Rectangle intersection area \\
\hline rectint & \begin{tabular}{l}
Sort elements in ascending \\
order
\end{tabular} \\
\hline sort & Sort rows in ascending order \\
\hline sortrows & \\
\hline
\end{tabular}
\begin{tabular}{ll}
\hline Basic Operations & (Continued) \\
\hline st d & Standard deviation \\
\hline sum & \begin{tabular}{l}
Sum of array elements \\
trapz \\
integration
\end{tabular} \\
\hline var & Variance \\
\hline & \\
\hline Finite Differences & Discrete Laplacian \\
\hline del 2 & \begin{tabular}{l}
Differences and approximate \\
derivatives
\end{tabular} \\
\hline diff & Numerical gradient \\
\hline gradient & \\
\hline & Correlation coefficients \\
\hline Correlation & Covariance matrix \\
\hline cor rooef & \\
\hline
\end{tabular}

\section*{Filtering and Convolution}
\begin{tabular}{ll}
\hline conv & \begin{tabular}{l}
Convolution and polynomial \\
multiplication
\end{tabular} \\
\hline conv2 & \begin{tabular}{l}
Two-dimensional convolution \\
deconv \\
filter \\
division
\end{tabular} \\
\hline filter 2 & \begin{tabular}{l}
Filter data with an infinite \\
impulseresponse (IIR) or finite \\
impulseresponse (FIR) filter
\end{tabular} \\
\hline & \begin{tabular}{l}
Two-dimensional digital \\
filtering
\end{tabular} \\
\hline
\end{tabular}

Fourier Transforms
\begin{tabular}{ll}
\hline abs & \begin{tabular}{l}
Absolute value and complex \\
magnitude
\end{tabular} \\
\hline angle & Phase angle \\
\hline cplxpair & \begin{tabular}{l}
Sort complex numbers into \\
complex conjugate pairs
\end{tabular} \\
\hline fft & \begin{tabular}{l}
One-dimensional fast Fourier \\
transform
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Fourier Transforms (Continued)} \\
\hline fft 2 & Two-dimensional fast Fourier transform \\
\hline fftshift & Shift DC component of fast Fourier transform to center of spectrum \\
\hline \(i f f t\) & Inverse one-dimensional fast Fourier transform \\
\hline ifft 2 & Inverse two-dimensional fast Fourier transform \\
\hline ifftn & Inverse multidimensional fast Fourier transform \\
\hline ifftshift & Inverse FFT shift \\
\hline nextpow2 & Next power of two \\
\hline unwrap & Correct phase angles \\
\hline \multicolumn{2}{|l|}{Vector Functions} \\
\hline cross & Vector cross product \\
\hline intersect & Set intersection of two vectors \\
\hline is member & Detect members of a set \\
\hline setdiff & Return the set difference of two vector \\
\hline setxor & Set exclusive or of two vectors \\
\hline union & Set union of two vectors \\
\hline uni que & Unique elements of a vector \\
\hline
\end{tabular}

\section*{Polynomial and Interpolation Functions}

These functions let you operate on polynomials such as multiply, divide, find derivatives, and evaluate. The data interpolation functions let you perform interpolation in one, two, three, and higher dimensions.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Polynomials} \\
\hline conv & Convolution and polynomial multiplication \\
\hline deconv & Deconvolution and polynomial division \\
\hline poly & Polynomial with specified roots \\
\hline polyder & Polynomial derivative \\
\hline polyeig & Polynomial eigenvalue problem \\
\hline polyfit & Polynomial curve fitting \\
\hline polyint & Analytic polynomial integration \\
\hline polyval & Polynomial evaluation \\
\hline polyvalm & Matrix polynomial evaluation \\
\hline residue & Convert between partial fraction expansion and polynomial coefficients \\
\hline roots & Polynomial roots \\
\hline \multicolumn{2}{|l|}{Data Interpolation} \\
\hline convhull & Convex hull \\
\hline convhulln & Multidimensional convex hull \\
\hline delaunay & Delaunay triangulation \\
\hline delaunay 3 & 3-D Delaunay tessellation \\
\hline delaunayn & Multidimensional Delaunay tessellation \\
\hline dsearch & Search for nearest point \\
\hline dsearchn & Multidimensional closest point search \\
\hline griddata & Data gridding \\
\hline griddata3 & Data gridding and hypersurface fitting for three-dimensional data \\
\hline griddatan & Data gridding and hypersurface fitting (dimension \(>=2\)) \\
\hline interpl & One-dimensional data interpolation (table lookup) \\
\hline interp2 & Two-dimensional data interpolation (table lookup) \\
\hline
\end{tabular}

A-12
\begin{tabular}{ll}
\hline Data Interpolation & (Continued) \\
\hline interp3 & \begin{tabular}{l}
Three-dimensional data \\
interpolation (table lookup)
\end{tabular} \\
\hline interpft & \begin{tabular}{l}
One-dimensional interpolation \\
using the FFT method
\end{tabular} \\
\hline interpn & \begin{tabular}{l}
Multidimensional data \\
interpolation (table lookup)
\end{tabular} \\
\hline meshgrid & \begin{tabular}{l}
Generate \(X\) and Y matrices for \\
three-dimensional plots
\end{tabular} \\
\hline ndgrid & \begin{tabular}{l}
Generate arrays for \\
multidimensional functions and \\
interpolation
\end{tabular} \\
\hline pchip & \begin{tabular}{l}
Piecewise Cubic Hermite \\
Interpolating Polynomial \\
(PCHIP)
\end{tabular} \\
\hline ppval & \begin{tabular}{l}
Piecewise polynomial evaluation \\
Cubic splineinterpolation
\end{tabular} \\
\hline tsparch & \begin{tabular}{l}
Search for enclosing Delaunay \\
triangle
\end{tabular} \\
\hline tsearchn & \begin{tabular}{l}
Multidimensional closest \\
simplex search \\
Voronoi diagram
\end{tabular} \\
\hline voronoi & \begin{tabular}{l}
Multidimensional Voronoi \\
diagrams
\end{tabular} \\
\hline voranoin & \\
\hline
\end{tabular}

\section*{Function Functions - Nonlinear Numerical Methods}

Using these functions you can solve differential equations, perform numerical evaluation of integrals, and optimize functions.
\begin{tabular}{ll}
\hline \begin{tabular}{l}
Function Functions \\
Methods
\end{tabular} & Nonlinear Numerical \\
\hline bvp4c & \begin{tabular}{l}
Solve two-point boundary value \\
problems (BVPs) for ordinary \\
differential equations (ODEs)
\end{tabular} \\
\hline bvpget & \begin{tabular}{l}
Extract parameters from BVP \\
options structure
\end{tabular} \\
\hline bvpinit & Form the initial guess for bvp4c \\
\hline
\end{tabular}

Function Functions - Nonlinear Numerical Methods (Continued)
\begin{tabular}{l|l}
\hline bvpset & \begin{tabular}{l}
Create/alter BVP options \\
structure
\end{tabular} \\
\hline bvpval & \begin{tabular}{l}
Evaluate the solution computed \\
bybvp4c
\end{tabular} \\
\hline dblquad & \begin{tabular}{l}
Numerical evaluation of double \\
integrals
\end{tabular} \\
\hline fminbnd & \begin{tabular}{l}
Minimize a function of one \\
variable
\end{tabular} \\
\hline fminsearch & \begin{tabular}{l}
Minimize a function of several \\
variables
\end{tabular} \\
\hline fzero & \begin{tabular}{l}
Find zero of a function of one \\
variable
\end{tabular} \\
\hline ode45, ode23, \\
odel13, ode15s, & \begin{tabular}{l}
Solve initial value problems for \\
ODEs
\end{tabular} \\
ode23s, ode23t, \\
ode23tb & \begin{tabular}{l}
Extract parameters from ODE \\
options structure
\end{tabular} \\
\hline odeget & \begin{tabular}{l}
Create/alter ODE options \\
structure
\end{tabular} \\
\hline odeset & \begin{tabular}{l}
Get optimization options \\
structure parameter values
\end{tabular} \\
\hline optimget & \begin{tabular}{l}
Create or edit optimization \\
options parameter structure
\end{tabular} \\
\hline optimset & \begin{tabular}{l}
Solveinitial-boundary value \\
problems
\end{tabular} \\
\hline pdepe & \begin{tabular}{l}
Evaluate the solution computed \\
bypdepe
\end{tabular} \\
\hline pdeval & \begin{tabular}{l}
Numerical evaluation of integrals, \\
adaptive Simpson quadrature
\end{tabular} \\
\hline quad & \begin{tabular}{l}
Numerical evaluation of \\
integrals, adaptive Lobatto \\
quadrature
\end{tabular} \\
\hline Vectorize expression
\end{tabular}

\section*{Sparse Matrix Functions}

These functions allow you to operate on a special type of matrix, sparse. Using these functions you can convert full to sparse, visualize, and operate on these matrices.
\begin{tabular}{ll}
\hline Elementary Sparse Matrices \\
\hline spdiags & \begin{tabular}{l}
Extract and create sparse band \\
and diagonal matrices
\end{tabular} \\
\hline speye & \begin{tabular}{l}
Sparse identity matrix \\
Sparse uniformly distributed \\
random matrix
\end{tabular} \\
\hline sprand & \begin{tabular}{l}
Sparse normally distributed \\
random matrix
\end{tabular} \\
\hline sprandn & \begin{tabular}{l}
Sparse symmetric random \\
matrix
\end{tabular} \\
\hline sprandsym & \begin{tabular}{l}
Find indices and values of \\
nonzero elements
\end{tabular} \\
\hline Full to Sparse Conversion \\
\hline find & \begin{tabular}{l}
Convert sparse matrix to full \\
matrix
\end{tabular} \\
\hline full & \begin{tabular}{l}
Import matrix from sparse \\
matrix external format
\end{tabular} \\
\hline sparse & \begin{tabular}{l}
Number of nonzero matrix \\
elements
\end{tabular} \\
\hline spconvert & \begin{tabular}{l}
Nonzero matrix elements
\end{tabular} \\
\hline Working with Nonzero Entries of Sparse \\
Matrices & \begin{tabular}{l}
Amount of storage allocated for \\
nonzero matrix elements
\end{tabular} \\
\hline nnz & \begin{tabular}{l}
Allocate space for sparse matrix \\
Apply function tononzero sparse \\
matrix elements
\end{tabular} \\
\hline nonzeros & \begin{tabular}{l}
Replace nonzero sparse matrix \\
elements with ones
\end{tabular} \\
\hline nzmax & spalloc \\
\hline spfun & spones \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Visualizing Sparse Matrices} \\
\hline spy & Visualize sparsity pattern \\
\hline \multicolumn{2}{|l|}{Reordering Algorithms} \\
\hline col amd & Column approximate minimum degree permutation \\
\hline col mmd & Sparse column minimum degree permutation \\
\hline colperm & Sparse column permutation based on nonzero count \\
\hline dmperm & Dulmage-Mendelsohn decomposition \\
\hline randperm & Random permutation \\
\hline symamd & Symmetric approximate minimum degree permutation \\
\hline sy mmmd & Sparse symmetric minimum degree ordering \\
\hline symrcm & Sparse reverse Cuthill-McK ee ordering \\
\hline \multicolumn{2}{|l|}{Norm, Condition Number, and Rank} \\
\hline condest & 1-norm matrix condition number estimate \\
\hline normest & 2-norm estimate \\
\hline \multicolumn{2}{|l|}{Sparse Systems of Linear Equations} \\
\hline bicg & BiConjugate Gradients method \\
\hline bicgstab & BiConjugate Gradients Stabilized method \\
\hline cgs & Conjugate Gradients Squared method \\
\hline cholinc & Sparse I ncompleteCholesky and Cholesky-Infinity factorizations \\
\hline cholupdate & Rank 1 update to Cholesky factorization \\
\hline gmres & Generalized Minimum Residual method (with restarts) \\
\hline
\end{tabular}

\section*{Character String Functions}

This set of functions lets you manipulate strings such as comparison, concatenation, search, and conversion.
\begin{tabular}{ll}
\hline General & \\
\hline abs & \begin{tabular}{l}
Absolute value and complex \\
magnitude
\end{tabular} \\
\hline eval & \begin{tabular}{l}
Interpret strings containing \\
MATLAB expressions
\end{tabular} \\
\hline real & Real part of complex number \\
\hline strings & MATLAB string handling \\
\hline
\end{tabular}

String to Function Handle Conversion
\begin{tabular}{l|l}
\hline func 2 st r & \begin{tabular}{l}
Constructs a function name \\
string from a function handle
\end{tabular} \\
\hline str 2 func & \begin{tabular}{l}
Constructs a function handle \\
from a function name string
\end{tabular} \\
\hline
\end{tabular}

String Manipulation
\begin{tabular}{l|l}
\hline deblank & \begin{tabular}{l}
Strip trailing blanks from the \\
end of a string
\end{tabular} \\
\hline findstr & Find one string within another \\
\hline lower & Convert string to lower case \\
\hline strcat & String concatenation \\
\hline strcmp & Compare strings \\
\hline strcmpi & Compare strings ignoring case \\
\hline strjust & Justify a character array \\
\hline strmatch & \begin{tabular}{l}
Find possible matches for a \\
string
\end{tabular} \\
\hline strncmp & \begin{tabular}{l}
Compare the first n characters \\
of two strings
\end{tabular} \\
\hline strncmpi & \begin{tabular}{l}
Compare the first n characters \\
of strings, ignoring case
\end{tabular} \\
\hline strrep & String search and replace \\
\hline strtok & First token in string \\
\hline strvcat & Vertical concatenation of strings \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{String Manipulation (Continued)} \\
\hline symvar & Determine symbolic variables in an expression \\
\hline texlabel & Produce the TeX format from a character string \\
\hline upper & Convert string to upper case \\
\hline \multicolumn{2}{|l|}{String to Number Conversion} \\
\hline char & Create character array (string) \\
\hline int 2 str & Integer to string conversion \\
\hline mat 2 str & Convert a matrix into a string \\
\hline num2str & Number to string conversion \\
\hline sprintf & Write formatted data to a string \\
\hline sscanf & Read string under format control \\
\hline str2double & Convert string to double-precision value \\
\hline str 2 mat & String to matrix conversion \\
\hline str2num & String to number conversion \\
\hline \multicolumn{2}{|l|}{Radix Conversion} \\
\hline bin2dec & Binary to decimal number conversion \\
\hline dec 2 bin & Decimal to binary number conversion \\
\hline dec2hex & Decimal to hexadecimal number conversion \\
\hline hex2dec & Hexadecimal to decimal number conversion \\
\hline hex2num & Hexadecimal to double number conversion \\
\hline
\end{tabular}

\section*{File I/ O Functions}

The file I/O functions allow you to open and close files, read and write formatted and unformatted data, operate on files, and perform other specialized file I/O such as reading and writing images and spreadsheets.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{File Opening and Closing} \\
\hline fclose & Close one or more open files \\
\hline fopen & Open a file or obtain information about open files \\
\hline \multicolumn{2}{|l|}{Unformatted I/ O} \\
\hline fread & Read binary data from file \\
\hline f write & Write binary data to a file \\
\hline \multicolumn{2}{|l|}{Formatted I/ O} \\
\hline fget I & Return the next line of a file as a string without lineterminator(s) \\
\hline fgets & Return the next line of a file as a string with line terminator(s) \\
\hline fprintf & Write formatted data to file \\
\hline fscanf & Read formatted data from file \\
\hline \multicolumn{2}{|l|}{File Positioning} \\
\hline feof & Test for end-of-file \\
\hline ferror & Query MATLAB about errors in file input or output \\
\hline frewind & Rewind an open file \\
\hline freek & Set file position indicator \\
\hline ftell & Get file position indicator \\
\hline \multicolumn{2}{|l|}{String Conversion} \\
\hline sprintf & Write formatted data to a string \\
\hline sscanf & Read string under format control \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Specialized File I/ O} \\
\hline dlmead & Read an ASCII delimited file into a matrix \\
\hline dl mwrite & Write a matrix to an ASCII delimited file \\
\hline hdf & HDF interface \\
\hline imfinfo & Return information about a graphics file \\
\hline i mread & Read image from graphics file \\
\hline i mwrite & Write an image to a graphics file \\
\hline strread & Read formatted data from a string \\
\hline textread & Read formatted data from text file \\
\hline wk1read & Read a Lotus123 WK 1 spreadsheet file into a matrix \\
\hline wkiwrite & Write a matrix to a Lotus123 wK 1 spreadsheet file \\
\hline
\end{tabular}

\section*{Bitw ise Functions}

These functions let you operate at the bit level such as shifting and complementing.

\section*{Bitw ise Functions}
\begin{tabular}{ll}
\hline bitand & Bit-wise AND \\
\hline bitcmp & Complement bits \\
\hline bitor & Bit-wise OR \\
\hline bitmax & Maximum floating-point integer \\
\hline bitset & Set bit \\
\hline bitshift & Bit-wise shift \\
\hline bitget & Get bit \\
\hline bitxor & Bit-wise XOR \\
\hline
\end{tabular}

\section*{Structure Functions}

Structures are arrays whose elements can hold any MATLAB data type such as text, numeric arrays, or other structures. You access structure elements by name. Use the structure functions to create and operate on this array type.
\begin{tabular}{l|l}
\hline Structure Functions \\
\hline deal & Deal inputs to outputs \\
\hline fi eldnames & Field names of a structure \\
\hline getfield & Get field of structure array \\
\hline rmfield & Remove structure fields \\
\hline setfield & Set field of structure array \\
\hline struct & Create structure array \\
\hline struct 2cell & \begin{tabular}{l}
Structure to cell array \\
conversion
\end{tabular} \\
\hline
\end{tabular}

\section*{MATLAB Object Functions}

Using the object functions you can create objects, detect objects of a given class, and return the class of an object.
\begin{tabular}{ll}
\hline Object Functions & \\
\hline class & \begin{tabular}{l}
Create object or return dass of \\
object
\end{tabular} \\
\hline isa & Detect an object of a given class \\
\hline met hods & Display method names \\
\hline met hodsview & \begin{tabular}{l}
Displays information on all \\
methods implemented by a dass
\end{tabular} \\
\hline subsasgn & \begin{tabular}{l}
Overloaded method for \(A(I)=B\), \\
A \(\}=B\), and A.field \(=B\)
\end{tabular} \\
\hline subsindex & \begin{tabular}{l}
Overloaded method for \(X(A)\) \\
Overloaded method for \(A(I), A\{ \}\) \\
and A.field
\end{tabular} \\
\hline
\end{tabular}

MATLAB Interface to Java Functions These functions allow you to bring J ava classes into MATLAB, construct objects, and call and save methods.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Interface to J ava Functions} \\
\hline class & Create object or return class of object \\
\hline i mport & Add a package or class to the current Java import list \\
\hline isa & Detect an object of a given class \\
\hline isjava & Test whether an object is a J ava object \\
\hline javatray & Constructs a J ava array \\
\hline javaMethod & Invokes a J ava method \\
\hline javaObject & Constructs a J ava object \\
\hline methods & Display method names \\
\hline methodsview & Display information on all methods imple.mented by a dass \\
\hline
\end{tabular}

\section*{Cell Array Functions}

Cell arrays are arrays comprised of cells, which can hold any MATLAB data type such as text, numeric arrays, or other cell arrays. Unlike structures, you access these cells by number. Use the cell array functions to create and operate on these arrays.

\section*{Cell Array Functions}
\begin{tabular}{l|l}
\hline cell & Create cell array \\
\hline cellfun & \begin{tabular}{l}
Apply a function to each element \\
in a cell array
\end{tabular} \\
\hline cellstr & \begin{tabular}{l}
Create cell array of strings from \\
character array
\end{tabular} \\
\hline cell2struct & \begin{tabular}{l}
Cell array to structure array \\
conversion
\end{tabular} \\
\hline celldisp & \begin{tabular}{l}
Display cell array contents
\end{tabular} \\
\hline cellplot & \begin{tabular}{l}
Graphically display the \\
structure of cell arrays
\end{tabular} \\
\hline num2cell & \begin{tabular}{l}
Convert a numeric array into a \\
cell array
\end{tabular} \\
\hline
\end{tabular}

\section*{Multidimensional Array Functions}

These functions provide a mechanism for working with arrays of dimension greater than 2.
\begin{tabular}{l|l}
\hline \multicolumn{2}{l}{ Multidimensional Array Functions } \\
\hline c at & Concatenate arrays \\
\hline flipdim & \begin{tabular}{l}
Flip array along a specified \\
dimension
\end{tabular} \\
\hline ind2sub & Subscripts from linear index \\
\hline ipermute & \begin{tabular}{l}
Inverse permute the dimensions \\
of a multidimensional array
\end{tabular} \\
\hline ndgrid & \begin{tabular}{l}
Generate arrays for \\
multidimensional functions and \\
interpolation
\end{tabular} \\
\hline ndims & Number of array dimensions \\
\hline
\end{tabular}
\begin{tabular}{l|l}
\hline Multidimensional Array Functions (Continued) \\
\hline permute & \begin{tabular}{l}
Rearrange the dimensions of a \\
multidimensional array
\end{tabular} \\
\hline reshape & Reshapearray \\
\hline shiftdim & Shift dimensions \\
\hline squeeze & Remove singleton dimensions \\
\hline sub2ind & Single index from subscripts \\
\hline
\end{tabular}

\section*{Data Visualization}

This extensive set of functions gives you the ability to create basic graphs such as bar, pie, polar, and three-dimensional plots, and advanced graphs such as surface, mesh, contour, and volume visualization plots. In addition, you can use these functions to control lighting, color, view, and many other fine manipulations.
\begin{tabular}{l|l}
\hline Basic Plots and Graphs \\
\hline bar & Vertical bar chart \\
\hline barh & Horizontal bar chart \\
\hline hist & Plot histograms \\
\hline histc & Histogram count \\
\hline hold & Hold current graph \\
\hline loglog & Plot using log-log scales \\
\hline pie & Pie plot \\
\hline plot & Plot vectors or matrices. \\
\hline polar & Semi-log scale plot \\
\hline semilogx & Semi-log scale plot \\
\hline semilogy & Create axes in tiled positions \\
\hline subplot & \\
\hline & Vertical 3-D bar chart \\
\hline Three-Dimensional Plotting \\
\hline bar 3 & 3-D comet plot \\
\hline bar 3 h & Generate cylinder \\
\hline comet 3 & \\
\hline cylinder &
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Three-Dimensional Plotting (Continued)} \\
\hline fill3 & Draw filled 3-D polygons in 3-space \\
\hline plot 3 & Plot lines and points in 3-D space \\
\hline quiver 3 & Threedimensional quiver (or velocity) plot \\
\hline slice & Volumetric slice plot \\
\hline sphere & Generate sphere \\
\hline stem3 & Plot discrete surface data \\
\hline waterfall & Waterfall plot \\
\hline \multicolumn{2}{|l|}{Plot Annotation and Grids} \\
\hline clabel & Add contour labels to a contour plot \\
\hline datetick & Date formatted tick labels \\
\hline grid & Grid lines for 2-D and 3-D plots \\
\hline gtext & Place text on a 2-D graph using a mouse \\
\hline I egend & Graph legend for lines and patches \\
\hline plotedit & Start plot edit mode to edit and annotate plots \\
\hline plotyy & Plot graphs with \(Y\) tick labels on the left and right \\
\hline title & Titles for 2-D and 3-D plots \\
\hline xlabel & X-axis labels for 2-D and 3-D plots \\
\hline ylabel & Y-axis labels for 2-D and 3-D plots \\
\hline zlabel & Z-axis labels for 3-D plots \\
\hline \multicolumn{2}{|l|}{Surface, Mesh, and Contour Plots} \\
\hline contour & Contour (level curves) plot \\
\hline contourc & Contour computation \\
\hline contourf & Filled contour plot \\
\hline hidden & Mesh hidden line removal mode \\
\hline meshc & Combination mesh/contourplot \\
\hline
\end{tabular}
\begin{tabular}{l|l}
\hline Surface, Mesh, and Contour Plots (Continued) \\
\hline mesh & 3-D mesh with reference plane \\
\hline peaks & \begin{tabular}{l}
A sample function of two \\
variables
\end{tabular} \\
\hline surf & 3-D shaded surface graph \\
\hline surface & Create surface low-level objects \\
\hline surfc & Combination surf/contourplot \\
\hline surfl & 3-D shaded surfacewith lighting \\
\hline trimesh & Triangular mesh plot \\
\hline trisurf & Triangular surface plot \\
\hline
\end{tabular}
\begin{tabular}{l|l}
\hline \multicolumn{2}{l}{ Volume Visualization } \\
\hline coneplot & \begin{tabular}{l}
Plot velocity vectors as cones in \\
3-D vector field
\end{tabular} \\
\hline contourslice & \begin{tabular}{l}
Draw contours in volume slice \\
plane
\end{tabular} \\
\hline curl & \begin{tabular}{l}
Compute the curl and angular \\
velocity of a vector field
\end{tabular} \\
\hline divergence & \begin{tabular}{l}
Compute the divergence of a \\
vector field
\end{tabular} \\
\hline flow & \begin{tabular}{l}
Generate scalar volume data
\end{tabular} \\
\hline interpstreamspeed & \begin{tabular}{l}
Interpolate streamline vertices \\
from vector-field magnitudes
\end{tabular} \\
\hline isocaps & \begin{tabular}{l}
Compute isosurface end-cap \\
geometry
\end{tabular} \\
\hline isocolors & \begin{tabular}{l}
Compute the col ors of isosurface \\
vertices
\end{tabular} \\
\hline isonormals & \begin{tabular}{l}
Compute normals of isosurface \\
vertices
\end{tabular} \\
\hline reducepatch & \begin{tabular}{l}
Extract isosurface data from \\
volume data
\end{tabular} \\
\hline reducevolume & \begin{tabular}{l}
Reduce the number of patch \\
faces
\end{tabular} \\
\hline shrinkfaces & \begin{tabular}{l}
Reduce number of elements in \\
volume data set
\end{tabular} \\
\hline slice & \begin{tabular}{l}
Reduce the size of patch faces \\
Draw slice planes in volume
\end{tabular} \\
\hline smooth3 & Smooth 3-D data
\end{tabular}

A-20
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Volume Visualization (Continued)} \\
\hline stream2 & Compute 2-D stream line data \\
\hline stream3 & Compute 3-D stream line data \\
\hline streamline & Draw stream lines from 2- or 3-D vector data \\
\hline streamparticles & Draw stream particles from vector volume data \\
\hline streamribbon & Draw stream ribbons from vector volume data \\
\hline streamslice & Draw well-spaced stream lines from vector volume data \\
\hline streamtube & Draw stream tubes from vector volume data \\
\hline surf2patch & Convert surface data to patch data \\
\hline subvolume & Extract subset of volume data set \\
\hline \multicolumn{2}{|l|}{Domain Generation} \\
\hline griddata & Data gridding and surface fitting \\
\hline meshgrid & Generation of X and Y arrays for 3-D plots \\
\hline \multicolumn{2}{|l|}{Specialized Plotting} \\
\hline area & Area plot \\
\hline box & Axis box for 2-D and 3-D plots \\
\hline comet & Comet plot \\
\hline compass & Compass plot \\
\hline convhull & Convex hull \\
\hline delaunay & Delaunay triangulation \\
\hline dsearch & Search Delaunay triangulation for nearest point \\
\hline errorbar & Plot graph with error bars \\
\hline ezcontour & Easy to use contour plotter \\
\hline ezcontourf & Easy to use filled contour plotter \\
\hline ezmesh & Easy to use 3-D mesh plotter \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Specialized Plotting (Continued)} \\
\hline ezmeshc & Easy to use combination mesh/ contour plotter \\
\hline ezplot & Easy to use function plotter \\
\hline ezplot 3 & Easy to use 3-D parametric curve plotter \\
\hline ezpolar & Easy to use polar coordinate plotter \\
\hline ezsurf & Easy to use 3-D col ored surface plotter \\
\hline ezsurfc & Easy to use combination surface/ contour plotter \\
\hline feather & Feather plot \\
\hline fill & Draw filled 2-D polygons \\
\hline fplot & Plot a function \\
\hline inpolygon & True for points inside a polygonal region \\
\hline pareto & Pareto char \\
\hline pcolor & Pseudocolor (checkerboard) plot \\
\hline pie 3 & 3-D pie plot \\
\hline plotmatrix & Scatter plot matrix \\
\hline polyarea & Area of polygon \\
\hline quiver & Quiver (or velocity) plot \\
\hline ribbon & Ribbon plot \\
\hline rose & Plot rose or angle histogram \\
\hline scatter & Scatter plot \\
\hline scatter 3 & 3-D scatter plot \\
\hline stairs & Stairstep graph \\
\hline stem & Plot discrete sequence data \\
\hline tsearch & Search for enclosing Delaunay triangle \\
\hline voronoi & Voronoi diagram \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{View Control} \\
\hline camdolly & M ove camera position and target \\
\hline camlookat & View specific objects \\
\hline camorbit & Orbit about camera target \\
\hline campan & Rotate camera target about camera position \\
\hline campos & Set or get camera position \\
\hline camproj & Set or get projection type \\
\hline camroll & Rotate camera about viewing axis \\
\hline camtarget & Set or get camera target \\
\hline camup & Set or get camera up-vector \\
\hline camva & Set or get camera view angle \\
\hline camzoom & Zoom camera in or out \\
\hline daspect & Set or get data aspect ratio \\
\hline pbaspect & Set or get plot box aspect ratio \\
\hline view & 3-D graph viewpoint specification. \\
\hline vi ewmt x & Generate view transformation matrices \\
\hline x 1 im & Set or get the current x-axis limits \\
\hline ylim & Set or get the current \(y\)-axis limits \\
\hline 21 im & Set or get the current z-axis limits \\
\hline \multicolumn{2}{|l|}{Lighting} \\
\hline camlight & Create or position a light \\
\hline 1 ight & Light object creation function \\
\hline lightangle & Spherical position of a light \\
\hline lighting & Lighting mode \\
\hline material & Material reflectance mode \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Transparency} \\
\hline alpha & Set or query transparency properties for objects in current axes \\
\hline alphamap & Specify the figure alphamap \\
\hline alim & Set or query the axes alpha limits \\
\hline \multicolumn{2}{|l|}{Color Operations} \\
\hline brighten & Brighten or darken color map \\
\hline caxis & Pseudocolor axis scaling \\
\hline colorbar & Display color bar (color scale) \\
\hline colordef & Set up color defaults \\
\hline colormap & Set the color look-up table (list of col ormaps) \\
\hline graymon & Graphics figure defaults set for grayscale monitor \\
\hline hsv2rgb & Huesaturation-value to red-green-blue conversion \\
\hline rgb2hsv & RGB to HSV conversion \\
\hline rgbplot & Plot color map \\
\hline shading & Color shading mode \\
\hline spinmap & Spin the colormap \\
\hline surfnorm & 3-D surface normals \\
\hline whitebg & Change axes background color for plots \\
\hline
\end{tabular}
\begin{tabular}{ll}
\hline Colormaps & \\
\hline a ut u mn & \begin{tabular}{l}
Shades of red and yellow color \\
map
\end{tabular} \\
\hline bone & \begin{tabular}{l}
Gray-scale with a tinge of blue \\
color map
\end{tabular} \\
\hline contrast & \begin{tabular}{l}
Gray color map to enhance \\
image contrast
\end{tabular} \\
\hline cool & \begin{tabular}{l}
Shades of cyan and magenta \\
col or map
\end{tabular} \\
\hline copper & Linear copper-tone color map \\
\hline
\end{tabular}

A-22
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Colormaps (Continued)} \\
\hline flag & Alternating red, white, blue, and black color map \\
\hline gray & Linear gray-scale color map \\
\hline not & Black-red-yellow-white col or map \\
\hline hsv & Hue-saturation-value (HSV) color map \\
\hline \(j\) et & Variant of HSV \\
\hline lines & Line color colormap \\
\hline prism & Colormap of prism colors \\
\hline spring & Shades of magenta and yellow color map \\
\hline s ummer & Shades of green and yellow colormap \\
\hline winter & Shades of blue and green color map \\
\hline \multicolumn{2}{|l|}{Printing} \\
\hline orient & Hardcopy paper orientation \\
\hline pagesetupdig & Page position dialog box \\
\hline print & Print graph or save graph to file \\
\hline printdg & Print dialog box \\
\hline printopt & Configure local printer defaults \\
\hline saveas & Save figure to graphic file \\
\hline
\end{tabular}
\begin{tabular}{l|l}
\hline Handle Graphics, General \\
\hline allchild & \begin{tabular}{l}
Find all children of specified \\
objects
\end{tabular} \\
\hline copyobj & \begin{tabular}{l}
Make a copy of a graphics object \\
and its children
\end{tabular} \\
\hline findall & \begin{tabular}{l}
Find all graphics objects \\
(induding hidden handles)
\end{tabular} \\
\hline findobj & \begin{tabular}{l}
Find objects with specified \\
property values
\end{tabular} \\
\hline gcbo & \begin{tabular}{l}
Return object whose callback is \\
currently executing
\end{tabular} \\
\hline gco & Return handle of current object \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Handle Graphics, Figure Windows (Continued)} \\
\hline newpl ot & Graphics M-file preamble for NextPl ot property \\
\hline refresh & Refresh figure \\
\hline saveas & Save figure or model to desired output format \\
\hline \multicolumn{2}{|l|}{Handle Graphics, Axes} \\
\hline axis & Plot axis scaling and appearance \\
\hline cla & Clear axes \\
\hline gca & Get current axes handle \\
\hline \multicolumn{2}{|l|}{Object Manipulation} \\
\hline reset & Reset axis or figure \\
\hline rotate3d & Interactively rotate the view of a 3-D plot \\
\hline selectmoveresize & Interactively select, move, or resize objects \\
\hline \multicolumn{2}{|l|}{Interactive User Input} \\
\hline ginput & Graphical input from a mouse or cursor \\
\hline 200 m & Zoom in and out on a 2-D plot \\
\hline \multicolumn{2}{|l|}{Region of Interest} \\
\hline dragrect & Drag XOR rectangles with mouse \\
\hline drawnow & Complete any pending drawing \\
\hline rbbox & Rubberband box \\
\hline
\end{tabular}

\section*{Graphical User Interfaces}

Thegraphical user interfacefunctions let you build your own interfaces for your applications.
\begin{tabular}{ll}
\hline Dialog Boxes & \\
\hline dialog & Create a dialog box \\
\hline errordlg & Create error dialog box \\
\hline helpdlg & Display help dialog box \\
\hline inputdlg & Create input dialog box \\
\hline listdlg & Create list selection dialog box \\
\hline msgbox & Create message dialog box \\
\hline pagedlg & Display page layout dialog box \\
\hline printdlg & Display print dialog box
\end{tabular}
\begin{tabular}{ll}
\hline User Interface Deployment \\
\hline guidata & \begin{tabular}{l}
Store or retrieve application \\
data
\end{tabular} \\
\hline gui handles & Create a structure of handles \\
\hline movegui & Move GUI figure onscreen \\
\hline openfig & Open or raise GUI figure \\
\hline
\end{tabular}
\begin{tabular}{l|l}
\hline \multicolumn{2}{l}{ User Interface Development } \\
\hline guide & Open the GUI Layout Editor \\
\hline inspect & Display Property Inspector \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{User Interface Objects} \\
\hline menu & Generate a menu of choices for user input \\
\hline uicontextmenu & Create context menu \\
\hline uicontrol & Create user interface control \\
\hline ui menu & Create user interface menu \\
\hline \multicolumn{2}{|l|}{Other Functions} \\
\hline dragrect & Drag rectangles with mouse \\
\hline findfigs & Display off-screen visible figure windows \\
\hline gcbf & Return handle of figure containing callback object \\
\hline gcbo & Return handle of object whose callback is executing \\
\hline rbbox & Create rubberband box for area selection \\
\hline select moveresize & Select, move, resize, or copy axes and uicontrol graphics objects \\
\hline textwrap & Return wrapped string matrix for given uicontrol \\
\hline uiresume & Used with ui wait, controls program execution \\
\hline ui wait & Used with ui resume, controls program execution \\
\hline waitbar & Display wait bar \\
\hline waitforbuttonpress & Wait for key/buttonpress over figure \\
\hline
\end{tabular}

\section*{Serial Port I/ O}

These functions provides direct access to peripheral devices that you connect to your computer's serial port.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Creating a Serial Port Object} \\
\hline serial & Create a serial port object \\
\hline \multicolumn{2}{|l|}{Writing and Reading Data} \\
\hline fget l & Read one line of text from the device and discard the terminator \\
\hline fgets & Read one line of text from the device and include the terminator \\
\hline fprintf & Write text to the device \\
\hline fread & Read binary data from the device \\
\hline fscanf & Read data from the device, and format as text \\
\hline f write & Write binary data to the device \\
\hline readasync & Read data asynchronously from the device \\
\hline stopasync & Stop asynchronous and write operations \\
\hline \multicolumn{2}{|l|}{Configuring and Returning Properties} \\
\hline get & Return serial port object properties \\
\hline set & Configure or display serial port object properties \\
\hline \multicolumn{2}{|l|}{State Change} \\
\hline fclose & Disconnect a serial port object from the device \\
\hline fopen & Connect a serial port object to the device \\
\hline record & Record data and event information to a file \\
\hline
\end{tabular}
\begin{tabular}{ll}
\hline General Purpose & \\
\hline clear & \begin{tabular}{l}
Removea serial port object from \\
the MATLAB workspace
\end{tabular} \\
\hline delete & \begin{tabular}{l}
Removea serial port object from \\
memory
\end{tabular} \\
\hline disp & \begin{tabular}{l}
Display serial port object \\
summary information
\end{tabular} \\
\hline instraction & \begin{tabular}{l}
Display event information when \\
an event occurs
\end{tabular} \\
\hline instrfind & \begin{tabular}{l}
Return serial port objects from \\
memory to the MATLAB \\
workspace
\end{tabular} \\
\hline I engalid & \begin{tabular}{l}
Determine if serial port objects \\
are valid
\end{tabular} \\
\hline I oad & \begin{tabular}{l}
Length of serial port object array \\
Load serial port objects and \\
variables into the MATLAB \\
workspace
\end{tabular} \\
\hline save & \begin{tabular}{l}
Save serial port objects and \\
variables to a MAT-file
\end{tabular} \\
\hline size & \begin{tabular}{l}
Send a break to the device \\
connected to the serial port \\
Size of serial port object array
\end{tabular} \\
\hline
\end{tabular}

\section*{Symbolic Math Tool box Quick Reference}
Introduction B-2
Arithmetic Operations B-3
Basic Operations B-3
Calculus B-3
Conversions B-3
Integral Transforms B-3
Linear Algebra B-3
Pedagogical and Graphical Applications B-4
Simplification B-4
Solution of Equations B-4
Special Functions B-4
Variable Precision Arithmetic B-4

\section*{Introduction}

This appendix lists the Symbolic Math Tool box functions that are available in the Student Version of MATLAB \& Simulink. For complete information about any of these functions, use Help and select Reference from the Symbolic Math Toolbox.

Note All of the functions listed in Symbolic Math Tool box Reference are available in the Student Version of MATLAB \& Simulink except maple, mapleinit, mf un, mfunlist, and mhelp.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Arithmetic Operations} \\
\hline + & Addition \\
\hline - & Subtraction \\
\hline * & Multiplication \\
\hline * & Array multiplication \\
\hline 1 & Right division \\
\hline . 1 & Array right division \\
\hline 1 & Left division \\
\hline . 1 & Array left division \\
\hline \(\wedge\) & Matrix or scalar raised to a power \\
\hline - & Array raised to a power \\
\hline , & Complex conjugate transpose \\
\hline ' & Real transpose \\
\hline \multicolumn{2}{|l|}{Basic Operations} \\
\hline coode & C code representation of a symbolic expression \\
\hline conj & Complex conjugate \\
\hline findsym & Determine symbolic variables \\
\hline fortran & Fortran representation of a symbolic expression \\
\hline i mag & Imaginary part of a complex number \\
\hline I atex & LaTeX representation of a symbolic expression \\
\hline pretty & Pretty print a symbolic expression \\
\hline real & Real part of an imaginary number \\
\hline sym & Create symbol ic object \\
\hline syms & Shortcut for creating multiple symbolic objects \\
\hline \multicolumn{2}{|l|}{Calculus} \\
\hline diff & Differentiate \\
\hline int & Integrate \\
\hline jacobian & J acobian matrix \\
\hline 1 imit & Limit of an expression \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Calculus (Continued)} \\
\hline symsum & Summation of series \\
\hline taylor & Taylor series expansion \\
\hline \multicolumn{2}{|l|}{Conversions} \\
\hline char & Convert s y m object to string \\
\hline double & Convert symbolic matrix to double \\
\hline poly 2 ymm & Function calculator \\
\hline sym2poly & Symbolic polynomial to coefficient vector \\
\hline \multicolumn{2}{|l|}{Integral Transforms} \\
\hline fourier & Fourier transform \\
\hline ifourier & Inverse Fourier transform \\
\hline ilaplace & Inverse Laplace transform \\
\hline iztrans & Inverse z-transform \\
\hline laplace & Laplace transform \\
\hline ztrans & z-transform \\
\hline \multicolumn{2}{|l|}{Linear Algebra} \\
\hline colspace & Basis for column space \\
\hline det & Determinant \\
\hline diag & Create or extract diagonals \\
\hline eig & Eigenvalues and eigenvectors \\
\hline expm & M atrix exponential \\
\hline inv & Matrix inverse \\
\hline jordan & J ordan canonical form \\
\hline null & Basis for null space \\
\hline poly & Characteristic polynomial \\
\hline rank & Matrix rank \\
\hline rref & Reduced row echelon form \\
\hline sud & Singular value decomposition \\
\hline tril & Lower triangle \\
\hline triu & U pper triangle \\
\hline
\end{tabular}
\begin{tabular}{ll}
\hline Pedagogical and Graphical Applications \\
\hline ezcontour & Contour plotter \\
\hline ezcontourf & Filled contour plotter \\
\hline ezmesh & Mesh plotter \\
\hline ezmeshc & \begin{tabular}{l}
Combined mesh and contour \\
plotter
\end{tabular} \\
\hline ezplot & Function plotter \\
\hline ezplot & Easy-to-use function plotter \\
\hline ezplot 3 & 3-D curve plotter \\
\hline ezpolar & Polar coordinate plotter \\
\hline ezsurf & Surface plotter \\
\hline ezsurfc & \begin{tabular}{l}
Combined surface and contour \\
plotter
\end{tabular} \\
\hline funtool & Function calculator \\
\hline rsums & Riemann sums \\
\hline taylortool & Taylor series calculator \\
\hline Simplification & \\
\hline collect & Collect common terms \\
\hline expand & \begin{tabular}{l}
Expand polynomials and \\
elementary functions
\end{tabular} \\
\hline factor & Factor \\
\hline horner & Nested polynomial representation \\
\hline numden & Numerator and denominator \\
\hline simple & Search for shortest form \\
\hline simplify & Simplification \\
\hline subexpr & \begin{tabular}{l}
Rewrite in terms of \\
subexpressions
\end{tabular} \\
\hline \hline Solution of Equations \\
\hline compose & Functional composition \\
\hline dsolve & Solution of differential equations \\
\hline finverse & Functional inverse \\
\hline solve & Solution of algebraic equations \\
\hline & \\
\hline
\end{tabular}
\begin{tabular}{ll}
\hline \multicolumn{2}{l}{ Special Functions } \\
\hline cosint & Cosineintegral, \(\operatorname{Ci(x)}\) \\
\hline lambertw & Solution of \(\lambda(\mathrm{x}) \mathrm{e}^{\lambda(\mathrm{x})}=\mathrm{x}\) \\
\hline sinint & Sineintegral, \(\operatorname{Si(x)}\) \\
\hline zeta & Riemannzeta function \\
\hline & \\
\hline Variable Precision Arithmetic \\
\hline digits & Set variable precision accuracy \\
\hline vpa & Variable precision arithmetic \\
\hline
\end{tabular}

\section*{Symbols}
operator 4-7
@ y m directory 7-15
7-65, 7-66

\section*{A}
abstract functions 7-10
Airy differential equation 7-93
Airy function 7-93
algorithms
vectorizing 6-23
animation 5-37
annotating plots 5-14
ans 4-4
Application Program Interface (API) 1-13
Array Editor 3-13
array operators 4-22
arrays 4-18, 4-21
cell 6-9
character 6-11
columnwise organization 4-23
concatenating 4-16
creating in M -files 4-15
deleting rows and columns 4-16
del eting rows or columns 4-16
elements 4-10
generating with functions and operators 4-14
listing contents 4-10
loading from external data files 4-15
multidimensional 6-7
notation for elements 4-10
preallocating 6-23
structure 6-14
variable names 4-10
aspect ratio of axes 5-11
axes 5-10
axis
labels 5-12
titles 5-12
axis 5-10

\section*{B}
backslash operator 7-65
Bessel functions
differentiating 7-17
integrating 7-24
besselj 7-17
besselk 7-93
bit map 5-25
bitwise functions A-17
blockset 1-14
bookmarking documentation 3-10
books
MATLAB-related 1-10
branch cut 7-42
break 6-6

\section*{C}
calculus 7-16-7-42
case 6-4
cell array functions A-19
cell arrays 6-9
char 6-13
character arrays 6-11
character string functions A-16
characteristic polynomial 4-21, 7-69, 7-71
circulant matrix 7-10, 7-53
clear 7-26
dearing variables
in the Maple workspace 7-27
in the MATLAB workspace 7-27
collect 7-44
col on operator 4-7
col ormap 5-20
colors
lines for plotting 5-4
colspace 7-66
column space 7-66
Command History 3-7
command line editing 4-30
Command Window 3-6
commands
general purpose A-3-A-4
comp. soft-sys.matlab 1-10
complex numbers, plotting 5-6
complex symbol ic variables 7-9
concatenating
arrays 4-16
strings 6-13
concatenation 4-16
configuring additional products
on Linux 2-13
on PC 2-5
configuring the desktop 3-5
conj 7-9
constants
special 4-12
contents in Help browser 3-10
continue 6-5
continuing statements on multiple lines 4-30
converting symbolic matrices to numeric form 7-8
coordinate system conversion A-10
current directory 3-11
Current Directory browser 3-11

\section*{D}
data analysis and Fourier transform functions A-11-A-12
data visualization A-19-A-24
debugging commands A-6-A-7
debugging M -files 3-14
decimal symbolic expressions 7-8
default symbolic variable 7-11
definite integration 7-23
deleting array el ements 4-16
demonstration programs 6-27
demos
MATLAB 1-6
demos 6-27
demos, running from the Launch Pad 3-8
desktop for MATLAB 3-4
desktop tools 3-6
determinant of matrix 4-19
development environment 3-2
diag 4-5
diff 7-16
differentiation 7-16-7-19
digits 7-8
discontinuities 7-41
display pane in Help browser 3-10
documentation 3-8
documentation path
setting on Linux 2-12
double 7-61
dsolve 7-90

\section*{E}
editing command lines 4-30
editing plots
interactively 5-15
Editor/Debugger 3-14
eig 7-68
eigenvalue 4-20
eigenvalue trajectories 7-78-7-85
eigenvalues 7-68-7-74, 7-79
computing 7-68
eigenvector 4-20, 7-69
elementary math functions A-8-A-9
elementary matrices and matrix manipulation A-7-A-8
elements of arrays 4-10
entering matrices 4-3
environment 3-2
eps 7-8
erase mode 5-37
eval 6-22
executing MATLAB 3-3
exiting MATLAB 3-3
expand 7-44
exporting data \(3-15\)
expressions 4-10, 4-13
evaluating 6-22
external programs, running from MATLAB 3-7
ezplot 7-30

\section*{F}
factor 7-45
favorites in Help browser 3-10
figure 5-9
figure windows 5-9
with multiple plots 5-9
file I/O functions A-17
find 4-26
finding in a page 3-10
finding object handles 5-33
findsym 7-13
fliplr 4-5
floating-point arithmetic 7-58
floating-point numbers 4-11
floating-point symbolic expressions 7-7
flow control 6-2
for 6-4
format
of output display 4-28
format 4-28, 7-58
function 6-19
function functions 6-24
nonlinear numerical methods A-13
function handles
defined 6-24
using 6-25
function \(M\)-file 6-17, 6-18
function of two variables 5-18
functions 4-11, 6-18
bitwise A-17
built-in 4-12
cell array A-19
character string A-16
coordinate system conversion A-10
data analysis and Fourier transform A-11-A-12
data visualization A-19-A-24
elementary math A-8-A-9
elementary matrices and matrix manipulation A-7-A-8
file I/O A-17
finding specific 1-7
function functions - nonlinear numerical methods A-13
general purpose commands A-3-A-4
graphical user interface control A-24-A-25
J ava interface A-18
language constructs and debugging A-5-A-7
logical A-5
matrix functions - numerical linear algebra A-10-A-11
multidimensional array A-19
object A-18
operators and special characters A-5
polynomial and interpolation A-12-A-13
serial port I/O A-25-A-26
sound processing A-15
sparse matrix A-14-A-15
specialized math A-9
specialized matrices A-8
structure A-18
variable number of arguments 6-19

\section*{G}

Givens transformation 7-63, 7-72
global variables 6-20
gol den ratio 7-6
graphical user interface 5-35
graphical user interface control A-24-A-25
graphics
2-D 5-2
files 5-26
handle graphics 5-28
objects 5-28
printing 5-26
grids 5-12
guide 5-35

\section*{H}

Handle Graphics 1-13, 5-28
finding handles 5-33
properties 5-31
Help
accessing 1-8
accessing on Linux 2-14
accessing on PC 2-6
help
sources of 1-8
via MathWorks K nowledge Base 1-10
via MathWorks Web site 1-10
via newsgroup 1-10
Help browser 3-8
help functions 3-10
Help Navigator 3-10
hierarchy of graphics objects 5-29
Hilbert matrix 7-8, 7-64
hold 5-7
horner 7-45

\section*{I}

IEEE floating-point arithmetic 7-59
if 6-2
images 5-24
imaginary number 4-10
Import Wizard 3-15
importing data 3-15
index in Help browser 3-10
installation procedure selecting products on Linux 2-11
installation root directory specifying 2-10
installing MATLAB on Linux 2-8 on PC 2-4
installing tool boxes on Linux 2-13 on PC 2-5
int 7-22
integration 7-22-7-27
definite 7-23
with real constants 7-24

\section*{J}
jacobian 7-18
J acobian matrix 7-18
J ava interface functions A-18
jordan 7-74
J ordan canonical form 7-74-7-75

\section*{L}

I anguage constructs A-5-A-6
Launch Pad 3-8
learning MATLAB 1-6
I egend 5-3
legend, adding to plot 5-3
library
mathematical function 1-13
license agreement 2-10
lighting 5-21
1 i mit 7-20
limits 7-20-7-21
two-sided 7-20
undefined 7-21
limits, axes 5-11
line continuation 4-30
line styles of plots 5-4
linear al gebra 7-63-7-85
Linux
setting online documentation path 2-12
load 4-15
loading arrays 4-15
local variables 6-19
\(\log\) of functions used 3-7
logical functions A-5
logical vectors 4-25

\section*{M}
machine epsilon 7-8
Maclaurin series 7-28
magi c 4-8
magic square 4-4
Maple 7-2
markers 5-5
MAT-file 5-24
mathematical function library 1-13
mathematical functions
listing advanced 4-12
listing elementary 4-11
listing matrix 4-12
MathWorks Knowledge Base 1-10
MathWorks Store
purchasing products from 1-10
MathWorks Web site 1-10
MATLAB
Application Program Interface 1-13
books 1-10
calling C subroutine 2-3, 2-8
calling F ortran subroutine 2-3, 2-8
demos 1-6
history 1-12
how to learn 1-6
installing on Linux 2-8
installing on PC 2-4
language 1-13
mathematical function library 1-13
overview 1-12
starting on Linux 2-13
supported Linux compilers 2-8
supported PC compilers 2-3
matlab command
setting up symbolic link 2-12
matrices 4-18
creating 4-14
entering 4-3
matrix 4-2
antidiagonal 4-5
determinant 4-19
main diagonal 4-5
singular 4-19
swapping columns 4-8
symmetric 4-18
transpose 4-4
matrix condition number 7-66
matrix functions - numerical linear algebra A-10-A-11
matrix multiplication 4-18
mesh plot 5-18
mex command
setting up symbolic link 2-12
MEX-file 2-3, 2-8
supported PC compilers 2-3
M-file 1-12, 4-15, 6-17
creating 6-17, 7-15
for creating arrays 4-15
function 6-17, 6-18
script 6-17
M-file performance 3-15
M-files 3-14
Microsoft Word and access to MATLAB 3-15
movies 5-38
multidimensional array functions A-19
multidimensional arrays 6-7
multiple data sets, plotting 5-3
multiple plots per figure 5-9
multivariate data, organizing 4-23

\section*{N}
newsgroup 1-10
newsgroup for MATLAB users 3-11

Notebook 3-15
null 7-66
null space 7-66
numbers 4-10
floating-point 4-11
numeric symbolic expressions 7-7

\section*{0}
object functions A-18
object properties 5-31
objects
finding handles 5-33
graphics 5-28
online documentation
specifying viewing options on Linux 2-12
online help, viewing 3-8
operator 4-11, A-5
col on 4-7
output
control ling format 4-28
suppressing 4-30
overlaying plots 5-7

\section*{P}
path 3-12
performance of M-files 3-15
plot 5-2
plot editing mode overview 5-15
plots
editing 5-14
plotting
adding legend 5-3
adding plots 5-7
annotating 5-14
basic 5-2
complex data 5-6
complex numbers 5-6
contours 5-8
line colors 5-4
line styles 5-4
lines and markers 5-5
mesh and surface 5-18
multiple data sets 5-3
multiple plots 5-9
poly 7-69
polynomial and interpolation functions A-12-A-13
PostScript 5-26
preallocation 6-23
preferences 3-5
pretty 7-28
print 5-26
printing
graphics 5-26
product
registration 1-11
professional version
differences with Student Version 1-3
profiler 3-15
Property Editor
interface 5-16

\section*{Q}
quitting MATLAB 3-3

\section*{R}
rational arithmetic 7-59
rational symbol ic expressions 7-7
ReadMe file 2-5
real property 7-9
real symbolic variables 7-9, 7-26
reference information, obtaining 1-7
registering your software 1-11
revision control systems, interfacing to MATLAB 3-15
root directory
specifying 2-10
Rosser matrix 7-70, 7-71
running functions 3-6
running MATLAB 3-3

\section*{s}
scalar expansion 4-24
scientific notation 4-10
screens
installation data 2-12
root directory 2-10
script M-file 6-17
scripts 6-17
search path 3-12
searching documentation 3-10
selecting products to be installed on Linux 2-11
semicol on to suppress output 4-30
serial port I/O functions A-25-A-26
shutting down MATLAB 3-3
si mple 7-48
simplifications 7-43-7-50
si mplify 7-47
Simulink 1-14
simultaneous differential equations solving 7-92
simultaneous linear equations
solving systems of 7-65, 7-89
singular matrix 4-19
singular value decomposition 7-76-7-78
solve 7-86
solving equations 7-86-7-93
algebraic 7-86-7-90
ordinary differential 7-90-7-93
sound processing functions A-15
source control systems, interfacing to MATLAB 3-15
sparse matrix functions A-14-A-15
special characters A-5
special constants 4-12
infinity 4-12
not-a-number 4-12
specialized graphs 5-8
specialized math functions A-9
specialized matrices A-8
specifying viewing options on Linux 2-12
spherical coordinates 7-18
starting MATLAB 3-3
startup.m file 2-5, 2-13
Stateflow 1-14
statements
continuing on multiple lines 4-30
executing 6-22
strings
concatenating 6-13
structure functions A-18
structures 6-14
Student Version
differences with professional version 1-3
MATLAB differences 1-3
Simulink differences 1-4
Symbol ic Math Tool box differences 1-4
subexpr 7-51
subexpressions 7-51-7-53
subpl ot 5-9
subs 7-53
subscripting
with logical vectors 4-25
subscripts 4-6
substitutions 7-51-7-57
sum 4-4
summation
symbolic 7-27
support
sources of 1-8
suppressing output 4-30
surface plot 5-18
svd 7-76
switch 6-4
s y m 7-5, 7-6, 7-7, 7-8, 7-26
symbolic expressions 7-86
creating 7-6
decimal 7-8
floating-point 7-7
numeric 7-7
rational 7-7
symbolic links
setting up 2-12
symbolic math functions
creating 7-14
Symbolic Math Toolbox
demo 7-5
learning 1-7
Symbolic Math Tool box functions
arithmetic operations B-3
basic operations B-3
calculus B-3
conversions B-3
integral transforms B-3
linear algebra B-3
pedagogical and graphical applications B-4
simplification B-4
solution of equations \(B-4\)
special functions B-4
variable precision arithmetic B-4
symbolic matrix
computing eigenvalue of 7-71
converting to numeric form 7-8
creating 7-10
differentiating 7-17
symbolic objects
about 7-5
symbolic summation 7-27
symbolic variables
complex 7-9
creating 7-6
default 7-11
real 7-9, 7-26
symmetric matrix 4-18
syms 7-7
sy msum 7-27
system requirements
Linux 2-7
PC 2-2

\section*{T}
taylor 7-28
Taylor series 7-28
technical support 1-11
text 6-11
TIFF 5-27
title
figure 5-12
tool box 1-12
tool boxes
installing on Linux 2-13
installing on PC 2-5
tools in the desktop 3-6
transpose 4-4
troubleshooting 1-8

\section*{U}
unreal property 7-9
user interface 5-35
building 5-35

\section*{V}
variable-precision arithmetic 7-58-7-62
variable-precision numbers 7-60
variables 4-10
global 6-20
local 6-19
vector 4-2
logical 4-25
preallocating 6-23
vectorization 6-23
version control systems, interfacing to MATLAB 3-15
viewing documentation 3-10
visibility of axes 5-11
vpa 7-60

\section*{W}

Web site 1-10
while 6-5
windows for plotting 5-9
windows in MATLAB 3-4
wireframe 5-18
surface 5-18
Word and access to MATLAB 3-15
word processing access to MATLAB 3-15
workspace 3-12
Workspace browser 3-12
www. mathworks.com 1-10
www. mathworks.com/education 1-10
www. mathworks.com/store 1-10, 2-5, 2-13
www. mathworks.com/support 1-8, 1-11
www. mathworks.com/support/books 1-10

\section*{x}
xor erase mode 5-37```

[^0]: Note The MathWorks documentation CD must be in your CD-ROM drive to start MATLAB.

[^1]: Note Some toolboxes have ReadMe files associated with them. When you download the tool box, check to see if there is a ReadMe file. These files contain important information about the tool box and possibly installation and configuration notes. To view the ReadMe file for a tool box, use the what s new command.

[^2]: guide

