4

PRy .
A P
Ul ottty

- .-

TP !
.!{7'1.“",—4“ i
o, pigd

3& uﬁ)lﬁ ‘SM‘)

MATLAB 1 331p 3 Yawgi 413909 pww g

A Guide to MATLAB: For Beginners and Experienced Users wts £33 il s 3 o o 5 Leaaly ol

Brian R. Hunt g« s

A Guide to
MATLAB.

for Beginners and
Experienced Users

Brian A. Hunt
ronald L Lipsman
jonathan M. Rosenberg

Chapter 5
MATLAB Graphics

In this chapter we describe more of MATLAB’s graphics commands and the most
common ways of manipulating and customizing graphics. For an overview of com-
mands, type help graphics (for general graphics commands), help graph2d
(for two-dimensional graphics commands), help graph3d (for three-dimensional
graphics commands), and help specgraph (for specialized graphing commands).

We have already discussed the commands plot and ezplot in Chapter 2. We
will begin this chapter by discussing more uses of these commands, as well as some of
the other most commonly used plotting commands. Then we will discuss methods for
customizing and manipulating graphics. Finally, we will introduce some commands
and techniques for creating and modifying images and sounds.

For most types of graphs we describe below, there is a command like plot
that draws the graph from numerical data, and a command like ezplot that
graphs functions specified by string or symbolic input. The latter commands
may be easier to use at first, but are more limited in their capabilities and
less amenable to customization. Thus, we emphasize the commands that plot
data, which are likely to be more useful to you in the long run.

Two-Dimensional Plots

Often one wants to draw a curve in the z-y plane, but with y not given explicitly as
a function of x. There are two main techniques for plotting such curves: parametric
plotting and contour or implicit plotting.

Parametric Plots

Sometimes x and y are both given as functions of some parameter. For example,
the circle of radius 1 centered at (0,0) can be expressed in parametric form as © =
cos(2mt), y = sin(2wnt), where ¢ runs from 0 to 1. Though y is not expressed as a
function of x, you can easily graph this curve with plot, as follows (see Figure 5.1):
>> T = 0:0.01:1;

>> plot(cos (2*pi*T), sin(2*pi*T))

>> axis square

If we had used an increment of only 0.1 in the T vector, the result would have been
a polygon with clearly visible corners. When your graph has corners that shouldn’t
be there, you should repeat the process with a smaller increment until you get a graph

59

60 Chapter 5. MATLAB Graphics

Figure 5.1. The Unit Circle 22 4 % = 1.

that looks smooth. Here also axis square forces the same scale on both axes;
without it the circle would look like an ellipse.

Parametric plotting is also possible with ezplot. You can obtain almost the
same picture as Figure 5.1 with the command:

>> ezplot(’‘cos(t)’, ’sin(t)’, [0 2*pi]); axis square

Notice that we used a semicolon after the ezplot command, but it did not prevent
the graph from appearing. In general, the semicolon suppresses only text output.

Contour Plots and Implicit Plots

A contour plot of a function of two variables is a plot of the level curves of the
function, i.e., sets of points in the z-y plane where the function assumes a constant
value. For example, the level curves of 22 + y? are circles centered at the origin, and
the levels are the squares of the radii of the circles. Contour plots are produced in
MATLAB with meshgrid and contour. The command meshgrid produces a
grid of points in a rectangular region, with a specified spacing. This grid is used by
contour to produce a contour plot in the specified region.

You can make a contour plot of 2 + y? as follows (see Figure 5.2):
>> [X Y] = meshgrid(-3:0.1:3, -3:0.1:3);
>> contour (X, Y, X.72 + Y."2); axis square

You can specify particular level sets by including an additional vector argument
to contour. For example, to plot the circles of radius 1, v/2, and /3, type

>> contour (X, Y, X.”2 + Y.72, [1 2 3])

The vector argument must contain at least two elements, so, if you want to plot a

Two-Dimensional Plots 61

—2r

Figure 5.2. Contour Plot of 22 + 2.

single level set, you must specify the same level twice. This is quite useful for implicit
plotting of a curve given by an equation in z and y. For example, to plot the circle of
radius 1 about the origin, type

>> contour (X, Y, X.”2 + ¥.72, [1 11)

Or to plot the lemniscate 72 — y? = (22 + y?)2, rewrite the equation as
(x2+y2)2—x2+y220

and type (see Figure 5.3)

>> [X Y] = meshgrid(-1.1:0.01:1.1, -1.1:0.01:1.1);

>> contour (X, ¥, (X.72 + Y¥.72).72 - X.72 + Y¥.72, [0 0])
>> axis square

>> title(’The lemniscate x"2-y " 2=(x"2+y"2)"2’)

In this case, we used ~ to produce exponents in the title. You can also use
for subscripts, and to produce a Greek letter, precede its name with a back-
slash — for example, \theta. Type doc title and look under “Exam-
ples” for other tricks with titles; these features also apply to labeling com-
mands like x1abel and ylabel. For more on annotating graphs, see the
section Customizing Graphics later in this chapter.

You can also do contour plotting with the command ezcontour, and implicit
plotting of a curve f(z,y) = 0 with ezplot. In particular, you can obtain almost
the same picture as Figure 5.2 with the command:

>> ezcontour(’'x"2 + y~2’, [-3, 3], [-3, 3]); axis square

and almost the same picture as Figure 5.3 with the command:

62 Chapter 5. MATLAB Graphics

The lemniscate x2-y?=(x>+y?)?

0.8}
0.6}
0.4}
0.2f

-0.21
-0.4r
-0.61

-0.81

-1 -0.5 0 0.5 1

Figure 5.3. A Lemniscate.

>> ezplot (' (x72 + y™2)72 - x"2 + y~27, ...
[-1.1, 1.1], [-1.1, 1.1]); axis square

Field Plots

The MATLAB routine quiver is used to plot vector fields or arrays of arrows.
The arrows can either be located at equally spaced points in the plane (if z- and
y-coordinates are not given explicitly), or they can be placed at specified locations.
Sometimes some fiddling is required to scale the arrows so that they don’t come out
looking too big or too small. For this purpose, quiver takes an optional scale-factor
argument. The following code, for example, plots a vector field with a “saddle point,”
corresponding to a combination of an attractive force pointing toward the z-axis and
a repulsive force pointing away from the y-axis. The output is shown in Figure 5.4.
>> [x, y] = meshgrid(-1.1:0.2:1.1, -1.1:0.2:1.1);

>> quiver (x, -y); axis equal; axis off

Three-Dimensional Plots
MATLAB has several routines for producing three-dimensional plots.

Curves in Three-Dimensional Space

For plotting curves in 3-space, the basic command is plot3. It works like plot,
except that it takes three vectors instead of two, one for the z-coordinates, one for the

Three-Dimensional Plots 63

VNN
VNN
NENE NN
VS S
VAV eyeyd
/| /S

f
!
r
\
\
|

70TV AVNNNN
!
x
}
/
NNV S

A !

RGN
NN N N
SNONN N

Vo
vt
(I
b

777
T 77
A

Figure 5.4. A Vector-Field Plot of (z, —y).

y-coordinates, and one for the z-coordinates. For example, we can plot a helix with

>> T = -2:0.01:2;
>> plot3(cos(2*pi*T), sin(2*pi*T), T)

Figure 5.5. The Helix x = cos(27z), y = sin(27z).

There is also a three-dimensional analog to ezplot called ezplot3; you can
instead plot the helix in Figure 5.5 with

>> ezplot3 (’cos (2*pi*t)’, ’‘sin(2*pi*t)’, ’'t’, [-2, 2])

64 Chapter 5. MATLAB Graphics

Surfaces in Three-Dimensional Space

There are two basic commands for plotting surfaces in 3-space: mesh and surf. The
former produces a transparent “mesh” surface, the latter an opaque shaded one. There
are two different ways of using each command, one for plotting surfaces in which the
z-coordinate is given as a function of x and y, and one for parametric surfaces in
which z, y, and z are all given as functions of two other parameters. Let us illustrate
the former with mesh and the latter with sur£.

To plot z = f(z, y), one begins with a meshgrid command as in the case of
contour. For example, the “saddle surface” z = x? — y? can be plotted with
>> [X,Y] = meshgrid(-2:0.1:2, -2:0.1:2);
>> Z = X."2 - Y.72; mesh(X, Y, 2)

777
i
4 y i
it
) i,
\ i
S 2%
0 (R e
_ NN
I\ R
. “*\ SRS :“

Figure 5.6. The Surface z = x2 — ¢

The resulting graph looks better on the computer screen since MATLAB shades the
surface with a color scheme depending on the z-coordinate. We could have produced
an opaque surface instead by replacing mesh with sur£.

There are also shortcut commands ezmesh and ezsur£; you can obtain a result
very similar to Figure 5.6 with

>> ezmesh(’'x"2 - y~2/, [-2, 2, -2, 2])

If one wants to plot a surface that cannot be represented by an equation of the
form z = f(z,y), for example the sphere 2% + y% + 22 = 1, then it is better to
parameterize the surface using a suitable coordinate system, in this case cylindrical or
spherical coordinates. For example, we can take as parameters the vertical coordinate
z and the polar coordinate 6 in the z-y plane. If r denotes the distance to the z-
axis, then the equation of the sphere becomes r24+z22=1,orr =+1— 22, and so

Figure Windows 65

z=+1—22cos0,y =1 — 22sin 0. Thus we can produce our plot with

>> [Z, Thetal = meshgrid(-1:0.1:1, (0:0.1:2)*pi);
>> X = sqgrt(l - Z."2).*cos(Theta);

>> Y = sqrt(l - Z."2).*sin(Theta);

>> surf (X, Y, Z); axis square

-1 -1

Figure 5.7. The Unit Sphere z2 + y2 + 22 = 1.

You can also plot a surface parametrically with ezmesh or ezsur£; you can
obtain a result very similar to Figure 5.7 with

>> ezsurf(’sqrt(l-z"2)*cos(t)’,
'sqgqrt(l-z"2)*sin(t)’, 'z’, [0, 2*pi, -1, 1]); axis equal

Notice that we had to specify the t range first because it is alphabetically before z,
even though z occurs before t in the strings we entered. Rather than remember such a
rule, in MATLAB 7 you can enter functions of more than one variable as anonymous
functions, for example @ (z, t) sqrt(l-z."2) .*cos (t); then, since you used
z as the first input variable, you would specify its range first.

Figure Windows

So far we have discussed only graphics commands that produce or modify a single
plot. But MATLAB is also capable of opening multiple figure windows or combining
several plots in one figure window. Here we discuss some basic methods for managing
and manipulating figure windows.

66 Chapter 5. MATLAB Graphics

Multiple Figure Windows

When you execute the first plotting command in a given MATLAB session, the graph
appears in a new window labeled “Figure 1”. Subsequent graphics commands either
modify or replace the graph in this window. You have seen that hold on directs
that new plotting commands should add to, rather than replace, the current graph. If
instead you want to create a new graph in a separate window while keeping the old
graph on your screen, type £igure to open a new window, labeled “Figure 2. Al-
ternatively, you can select a New Figure from the File menu in either your main MAT-
LAB window or the first figure window. Subsequent graphics commands will affect
only this window, until you change your current figure again with another £igure
command (e.g., type £igure (1) to switch the current figure back to “Figure 1), or
by bringing another figure to the foreground with the mouse. When multiple figure
windows are open, you can find out which is the current one by typing ge £, short for
“get current figure.” Finally, you can delete figure windows in the usual manner with
the mouse, or with the command close; see the online help for details.

The Figure Toolbar

Each figure window has a tool bar underneath its menu bar with shortcuts for several
menu items, including on the left icons for opening, saving, and printing figures. Near
the middle, there are several icons that correspond to items in the Tools menu.

The two icons with plus and minus signs control zooming in and out. Click on
the icon with a plus sign, and then click on a point in your graph to zoom in near that
point. You can click and zoom multiple times; each zoom changes the scale on both
axes by a factor of roughly 2. However, don’t click too fast, because double-clicking
resets the graph to its original state. Clicking on the icon with the minus sign allows
you to zoom out gradually. MATLAB 7 also has an icon in the shape of a hand that
allows you to click and drag the graph to pan both horizontally and vertically within
the current axes. More zooming options are available by right-clicking in the figure
window while zooming, by using the Options submenu of the Tools menu, or by
using the command zoom (see its online help).

Clicking the next icon to the right with the circular arrow allows you to rotate
three-dimensional (3D) graphics. For more 3D effects, select the Camera Toolbar
from the View menu (in MATLAB 6 and higher). You can also change the view-
point with the command view. In particular, the command view (2) projects a
figure into the x-y plane (by looking down on it from the positive z-axis), and the
command view (3) views it from the default direction in 3-space, which is in the
direction looking toward the origin from a point far out on the ray x = —0.5272¢,
y = —0.6871¢, z = 0.5¢, ¢t > 0.

v/ InMATLAB, any two-dimensional plot can be “viewed in 3D,” and any three-
dimensional plot can be projected into the plane. Thus Figure 5.5 above (the
helix), if followed by the command view (2), produces a circle.

In MATLAB 7, clicking the next icon to the right of the rotate icon enables the
Data Cursor, which allows you to display the coordinates of a point on a curve by

v

v

s

Customizing Graphics 67

clicking on or near the curve. Right-clicking in the figure window gives several op-
tions; changing Selection Style to Mouse Position will allow you to click on an ar-
bitrary point on the curve rather than just a data point. (Remember that the curves
plotted by MATLAB are piecewise-linear curves connecting a finite number of data
points.) This can be useful especially after zooming, because data points may then be
spaced far apart. Another way to get coordinates of a point (in earlier versions as well
as MATLAB 7) is by typing ginput (1) in the Command Window; this allows you
to click on any point in the figure window, not just on a curve. While this gives you
more flexibility, if you want the precise coordinates of a point on a curve, it is best to
use the Data Cursor, because it will always highlight a point on the curve even if you
don’t click exactly on the curve.

Also in MATLAB 7 only, the rightmost icon on the Figure Toolbar opens three
windows surrounding the figure; these are collectively known as Plot Tools, and you
can also open them with the command plottools. You can also control the display
of these three windows — the Figure Palette, the Plot Browser, and the Property Editor
—individually from the View menu. These windows enable various means of editing
figures. Many of these capabilities are also available in the Insert and Tools menus,
and from the Plot Edit Toolbar in the View menu. We will briefly discuss some
editing options in the Customizing Graphics section below, but there are many more
possibilities and we encourage you to experiment with these tools.

In earlier versions of MATLAB, as well as MATLAB 7, more limited editing
capabilities are available by clicking the arrow icon to the right of the print
icon on the Figure Toolbar and then right-clicking in the figure.

Combining Plots in One Window

The command subplot divides the figure window into an array of smaller plots. The
first two arguments give the dimensions of the array of subplots, and the last argument
gives the number of the subplot (counting from left to right across the first row, then
from left to right across the next row, and so on) in which to put the output of the next
graphing command. The following example, whose output appears in Figure 5.8,
produces a 2 x 2 array of plots of the first four Bessel functions J,,, 0 < n < 3.
>> X = 0:0.05:40;
>> for n = 1:4

subplot(2,2,n)

plot (X, besselj(n - 1, X))
end

In MATLAB you can also create subplots using the Figure Palette, which you
can enable from the View menu or as part of the Plot Tools described above.

v¢ Customizing Graphics

This is a more advanced topic; if you wish you can skip it on a first reading.

68 Chapter 5. MATLAB Graphics

0.5 0.5

0 0

-0.5 -0.5
0 20 40 0 20 40

0.5 0.5

0 0

-0.5 -0.5
0 20 40 0 20 40

Figure 5.8. Bessel Functions Jo(z) (upper left), Ji(z) (upper right), Jo(x) (lower
left), and J3(x) (lower right).

So far in this chapter, we have discussed some commonly used MATLAB routines for
generating and manipulating plots. But often, to get a more precise result, you need to
customize or edit the graphics these commands produce. In order to do this, you must
understand a few basic principles concerning the way MATLAB stores and displays
graphics. For most purposes, the discussion here will be sufficient. But if you need
more information, you may want to consult one of the books devoted exclusively to
MATLAB graphics, such as Using MATLAB Graphics, which comes free (in PDF
format) with the software and can be accessed in the “Printable Documentation” sec-
tion in the Help Browser (or under “Full Documentation Set” from the helpdesk
in MATLAB 5.3), or P. Marchand & O. Holland, Graphics and GUIs with MATLAB,
3rd ed., Chapman & Hall/CRC, London, 2002.

Once you have created a figure, there are two basic ways to manipulate it. The cur-
rent figure can be modified by typing MATLAB commands in the Command Window,
such as the commands title and axis square that we have already encountered.
Or you can modify the figure with the mouse, using the menus and icons in the figure
window itself. Almost all of the text commands have counterparts that can be exe-
cuted directly in the figure window. So why bother learning both techniques? The
reason is that editing in the figure window is often more convenient, especially when
one wishes to “experiment” with multiple changes, while editing a figure with MAT-
LAB commands in an M-file makes your customizations reproducible. So the true
MATLAB expert uses both techniques. While the text commands generally remain
the same from one version of MATLAB to the next, the figure-window menus and
tools are significantly different in MATLAB 5.3, 6, and 7. All of these versions have
a Property Editor, but it is accessed in different ways. In MATLAB 7, you can open
it with Plot Tools as described above, or from the View menu. In MATLAB 6, select

Customizing Graphics 69

Edit:Current Object Properties.... In MATLAB 5.3, select File:Property Editor....

To modify objects in the figure window with the mouse, editing must be enabled in
that window. In MATLAB 6 and later, you can enable or disable editing by selecting
Tools:Edit Plot or by clicking the arrow icon to the right of the print icon. When
editing is enabled, this arrow icon is highlighted, and there is a check mark next to
Edit Plot in the Tools menu. In several places below we will tell you to click on
an object in the figure window in order to edit it. When you click on the object, it
should be highlighted with small black squares. If this doesn’t happen, then you need
to enable editing.

Annotation

In order to insert labels or text into a plot, you can use the commands text, xlabel,
ylabel, zlabel, and legend, in addition to title. As the names suggest,
xlabel, ylabel, and z1label add text next to the coordinate axes, 1egend puts
a “legend” on the plot, and text adds text at a specific point. These commands take
various optional arguments that can be used to change the font family and font size
of the text. As an example, let’s illustrate how to modify our plot of the lemniscate
(Figure 5.3) by adding and modifying text:

>> title(’The lemniscate x"2-y"2=(x"2+y"2)"2’, ’FontSize’,
20, ’FontName’, ’Helvetica’, ’'FontWeight’, ’bold’)

>> text (0, 0, ’ \leftarrow a node, also an inflection’,
'FontSize’, 12)

>> text (0.2, -0.1, ’point for each branch’, ’FontSize’, 12)
>> xlabel x, ylabel y

The lemniscate x>-y?=(x?+y?)?

0.8r
0.61

& anode, also an inflection
point for each branch

-0.61
-0.81

Figure 5.9. The Lemniscate from Figure 5.3 with Annotation and a Larger Title.

70 Chapter 5. MATLAB Graphics

Notice that many symbols (such as the arrow pointing to the left in Figure 5.9) can
be inserted into a text string by calling them with names starting with \. (If you’ve
used the scientific typesetting program TgX, you’ll recognize the convention here.) In
most cases the names are self-explanatory. For example, you get a Greek 7 by typing
\pi, a summation sign » _ by typing either \Sigma (for a capital ‘sigma’) or \ sum,
and arrows pointing in various directions with \leftarrow, \uparrow, and so
on. For more details and a complete list of available symbols, see the listing for “Text
Properties” in the Help Browser (you can find this listing from the “Search” tab in the
Help Browser, or type doc text and click on “Text Properties” at the bottom of its

page).

In MATLAB 6 and later, you can insert the same types of annotation using the
Insert menu in the Figure Window. In MATLAB 7, many more annotations
are available by enabling the Plot Edit Toolbar, the Figure Palette, and/or the
Property Editor. You can also use the Property Editor to change the font of a
text label; click on the text you want to change, then go to the Property Editor.

Change of Plot Style

Another important way to change the style of graphics is to modify the color or line
style in a plot or to change the tick marks and labeling on the axes. Within a plot
command, you can change the color of a graph, or plot with a dashed or dotted line, or
mark the plotted points with special symbols, simply by adding a string third argument
for every z-y pair. Symbols for colors are *y* for yellow, “m” for magenta, * ¢ for
cyan, 'r’ forred, g’ for green, b’ for blue, *w”’ for white, and "k’ for black.
Symbols for point markers include ’ o’ for a circle, "%’ for a cross, * +’ for a plus
sign, and ’ *’ for a star. Symbols for line styles include * -’ for a solid line, * : * for
a dotted line, * - - for a dashed line. If a point style is given but no line style, then
the points are plotted but no curve is drawn connecting them. (The same methods
work with plot3 in place of plot.) For example, you can produce a solid red sine
curve together with a dotted blue cosine curve, marking all the local maximum points
on each curve with a distinctive symbol of the same color as the plot, as follows:

>> X = (-2:0.02:2)*pi; Y1l = sin(X); Y2 = cos(X);

>> plot (X, Y1, ‘r-’, X, Y2, ’'b:’); hold on

>> X1 = [-3*pi/2 pi/2]; ¥3 = [1 1]; plot(X1l, ¥3, ’'r*’)

>> X2 = [-2*%pi 0 2*pi]; Y4 = [1 1 1]; plot(X2, Y4, ’'b+’)

>> axis([-7 7 -1.1 1.11)

Here you may want the tick marks on the z-axis located at multiples of 7. This can be
done with the command set, which is used to change various properties of graphics.
To apply it to the axes, it has to be combined with the command gea, which stands
for “get current axes.” The code

>> set(gca, ’'XTick’, (-2:2)*pi, ’'XTickLabel’,
'-2pi|-pi|0|pi|2pi’, ’FontSize’, 16)

in combination with the code above gets the current axes, sets the ticks on the x-axis
to go from —27 to 27 in multiples of 7, and then labels these ticks symbolically

Customizing Graphics 71

(rather than in decimal notation, which is ugly here). It also increases the size of the
labels to a 16-point font. The result is shown in Figure 5.10.

T . ‘

*
I

0.6 7
0.4r b
0.2r b

-0.2F 7
-0.4r 1
—0.6F i
-0.8} ,

1t i

—2pi —pi 0 pi 2pi

Figure 5.10. Two Periods of sin z and cos x.

Incidentally, you might wonder how to label the ticks as —2m, —, etc., instead of
-2pi, -pi, and so on. This is trickier but you can do it by typing

>> set(gca, ’‘FontName’, ’‘Symbol’)
>> set(gca, ’‘XTickLabel’, '-2p|-p|0|p|2p’)

since in the Symbol font, 7 occupies the slot held by p in text fonts.

In MATLAB 7, you can again use the Property Editor to make the same
types of stylistic changes. Click on a curve and go to the Property Editor to
change its style, color, width, etc. In a 3D plot, you can click on a surface
and see options for changing its coloring and other properties. To change the
tick marks, labeling, etc., click on the axes or a blank area inside them to
focus the Property Editor on the axes. In MATLAB 6, click on a curve and
select Edit:Current Object Properties... to modify its properties, or select
Edit: Axes Properties... to change the font for the tick labels.

Full-Fledged Customization

What about changes to other aspects of a plot? The commands get and set can
be used to obtain a complete list of the properties of the objects in a figure window
and then to modify them. These objects and properties are arranged in a hierarchical
structure, with each object identified by a floating-point number called a handle. If
you type get (gcf), you will “get” a (rather long) list of properties of the current
figure (whose handle is returned by the function gef). Some of these might read

72 Chapter 5. MATLAB Graphics

Color = [0.8 0.8 0.8]
CurrentAxes = [151.001]
Children = [151.001]

Here Color gives the background color of the plot in red-green-blue (RGB) coordi-
nates, where [0 0 0] is black and [1 1 1] is white; [0.8 0.8 0.8] is light gray. Notice
that CurrentAxes and Children in this example have the same value, the one-
element vector containing the funny-looking number 151.001. This number is the
handle of the current axes, which would also be returned by the command gca (“get
current axes”). The fact that this handle also shows up under Children indicates
that the axes are “children” of the figure, i.e., they lie one level down in the hierar-
chical structure. Typing get (gca) would then give you a list of axis properties,
including the handles of further Children such as Line objects, within which you
would find the XData and YData encoding the actual plot.

In the example above, 151.001 is not the exact value of the axes handle,
Jjust its first few decimal places. So, typing get (151.001) would yield
an error message. To retrieve the exact value of Children in the exam-
ple above, type get (gcf, ’Children’).In many cases, a figure will
have multiple children, in which case this command will return a vector
of handles.

Once you have located the properties you’re interested in, they can be changed
with set. For example,

>> set(gcf, ’‘Color’, [1 0 0])

changes the background color of the border of the figure window to red, and

>> set(gca, ’‘Color’, [1 1 0])

changes the background color of the plot itself (a child of the figure window) to yellow
(which in the RGB scheme is half red, half green).

This “one at a time”” method for locating and modifying figure properties can be
speeded up using the command f£indobj to locate the handles of all the descendents
(the main figure window, its children, children of children, etc.) of the current fig-
ure. One can also limit the search to handles containing elements of a specific type.
For example, f£indobj (’ type’, "line’) hunts for all handles of objects con-
taining a Line element. Once you have located these, you can use set to change
the LineStyle from solid to dashed, etc. In addition, the low-level graphics com-
mands 1ine, rectangle, £ill, surface, and image can be used to create new
graphics elements within a figure window.

In MATLAB 7, you can also see and modify a full list of properties for the
figure, axes, or other object using the Property Editor. Click on the object
and then click on the “Inspector...” button in the Property Editor. To select
the figure itself, click on the border of the figure, outside the axes.

As an example of these techniques, the following code creates a chessboard on a
white background, as shown in Figure 5.11.

Images, Animations, and Sound 73

>> white = [1 1 1]; gray = 0.7*white;
>>a=[0110]; b=[0011]; ¢ = [111 1];
>> figure; hold on
>> for k = 0:1, for j = 0:2:6
fill(a’*c + c¢’*(0:2:6) + k, b’*c + j + k, gray)
end, end
>> plot(8*a’, 8*b’, ’'k’)
>> set(gca, ’'XTickLabel’, [], ’YTickLabel’, [])
>> set(gcf, ’‘Color’, white); axis square

Figure 5.11. A Chessboard.

Here white and gray are the RGB codings for white and gray. The double for
loop draws the 32 dark squares on the chessboard, using £111, with j indexing the
dark squares in a single vertical column, with k = 0 giving the odd-numbered rows,
and with k = 1 giving the even-numbered rows. Notice that £111 here takes three
arguments: a matrix, each of whose columns gives the x-coordinates of the vertices
of a polygon to be filled (in this case a square), a second matrix whose corresponding
columns give the y-coordinates of the vertices, and a color. We’ve constructed the
matrices with four columns, one for each of the solid squares in a single horizontal
row. The plot command draws the solid black line around the outside of the board.
Finally, the first set command removes the printed labels on the axes, and the second
set command resets the background color to white.

¢ Images, Animations, and Sound

MATLAB is also able to create and manipulate full-color images, animations, and
sound files. In addition to the command-line methods described below, you can open

74 Chapter 5. MATLAB Graphics

amedia file in a format that MATLAB supports by double-clicking on it in the Current
Directory Browser or by selecting File:Import Data....

Images

MATLAB can read, write, and edit images, such as those created by a digital camera,
found on the World Wide Web, or created from within MATLAB. An image is simply
a two-dimensional array of tiny colored squares called “pixels.” The image may be
stored in a file in a variety of formats, including png, jpeg, and gif. In MATLAB,
a color image with height h pixels and width w pixels is generally stored in one of
two ways: as an RGB image or an indexed image. An RGB image is represented as
an h X w x 3 array, so that the color of each pixel is specified by three values: a red
intensity, a green intensity, and a blue intensity. (A similar type of image is grayscale,
which is represented as an h x w array of pixel intensities.) An indexed image consists
of an h x w array together with an auxiliary ¢ x 3 array called a “colormap”; each
element in the first array represents the index of a row in the colormap, and this row
gives the RGB values for the corresponding pixel. (What MATLAB calls RGB format
is often called “true color” in graphics programming; an indexed image is often called
“pseudocolor.”)

The command imread will read an image from any of a large variety of image-
file formats; see the online help for supported formats. Some formats, such as png,
can store RGB or indexed images. Other formats can store only one type or the other;
gif images are always indexed, whereas jpeg images are never indexed. Most
images you find on the World Wide Web will be stored in RGB format unless they
are gif files. To read an RGB image from the file picture.png and store it in the
array rgbpic, type
>> rgbpic = imread(’picture.png’):;

You can read an indexed image with imread by assigning its output to two variables,
one for the image array and one for the colormap. You can then convert these arrays
to a single RGB array with ind2rgb. For example:

>> [indpic, map] = imread(’picture.gif’);

>> rgbpic = ind2rgb (indpic, map);

Converting from RGB to indexed format is harder because generally the num-
ber of different colors in the image must be reduced; colormaps often have
256 or fewer colors. MATLAB’s Image Processing Toolbox has a command
rgb2ind that offers several algorithms for making this conversion.

The command image displays an image in a figure window. For an RGB image
rgbpic, simply type
>> image (rgbpic)

>> axis equal tight

The second command is not necessary, but ensures that the image is displayed in its
intended aspect ratio. For an indexed image indpiec with colormap map, type

Images, Animations, and Sound 75

>> image (indpic)

>> colormap (map)

The command colormap changes the colormap of the current axes or, with no input
arguments, outputs the current colormap.

You can edit an image by changing the values in the image array. Notice that
when you display an image, the axes are labeled with the indices of the image array.
You can use the zoom feature of the figure window (see the Figure Windows section
earlier in this chapter) to locate more precisely the indices of a particular feature of
the image, or even an individual pixel. Theoretically at least, you can then edit the
image in any way you want by changing the numbers in the array. Here we describe
how to carry out several common manipulations in a practical manner.

We will describe mainly how to edit RGB images, since this format al-
lows you more freedom and you can always convert from indexed for-
mat to RGB as described above. However, RGB images are stored in
three-dimensional arrays, which may take some time to get used to. Pre-
viously in this book we have discussed only two-dimensional arrays, and
some MATLAB commands that manipulate two-dimensional arrays do
not work for three-dimensional arrays.

To reverse an image up-to-down or left-to-right, you simply need to reverse the
array with £1ipdim. For example,

>> image (flipdim(rgbpic, 2))

will display a left-to-right mirror image, while £lipdim(rgbpic, 1) reverses
the array up-to-down. (For indexed images and other two-dimensional arrays, you
can use the more mnemonic commands £1iplr and £1ipud instead.)

To crop an image, select the appropriate subarray. For example, to remove 50
pixels from the top and bottom of the image and 100 pixels from the left and right,
type
>> newpic = rgbpic(51:end-50, 101l:end-100, :);

You can then display the cropped image newpic as described above, or save it as
described below.

To examine the color of an individual pixel, you can display its RGB values in the
Command Window and/or display it in a figure window. For example, to examine the
pixel of rgbpic in the lower left-hand corner, type:
>> rgbpic(end, 1, :)

ans(:,:,1) =

240
ans(:,:,2) =
114
ans(:,:,3) =
14

The output above gives (hypothetical) red, green, and blue values for the pixel. To see
this color in the current figure window, type image (rgbpic(end, 1, :)). You

76 Chapter 5. MATLAB Graphics

can then adjust the color as desired; for instance, typing rgbpic (end, 1, 2) =
180 will increase the green intensity, making the color lighter and more yellow.

Of course, changing a single pixel will not change the appearance of the figure
much, but you can also change the color of a whole block of pixels or the entire
image in a similar manner. For example, to black out a rectangle within the picture,
set all of the values in the corresponding subarray to 0. Thus, rgbpic (40:60,
90:110, :) = O will change to black all the pixels in a 21-by-21 square centered
50 pixels from the top and 100 pixels from the left of the image.

v/ Changing the numbers in the array as we have just described will not change
the image displayed in the figure window until you issue a new image com-
mand.

In addition to manipulating images that you read into MATLAB, you can create
your own images to visualize numerical data. Suppose, for example, that you have an
array temp that contains temperatures for some geographical region. You can display
the temperatures as an indexed image by typing

>> imagesc (temp)

The command imagesc works like image, except that it rescales the values in a
two-dimensional array so that the highest number corresponds to the highest num-
bered color in the current colormap and the lowest number corresponds to the lowest
numbered color. With the default colormap in effect, hot regions will be colored red
and cold regions will be colored blue, with other colors representing intermediate
temperatures.

To display the colormap next to the image, type colorbar. Notice that the
numbers on this bar correspond to the numbers in your original array, and are inde-
pendent of the rescaling done by imagesec. If you want a different colormap, you
can create your own or use one of the other colormaps built into MATLAB; type doc
colormap for a selection. For example, to transform the temperature map described
above into a black-and-white image where white represents hot, black represents cold,
and intermediate temperatures are in shades of gray, type colormap (gray) .

Finally, you can save an image in one of the standard formats like png with the
command imwrite. For example, to save newpic to the file newpict . png, type

>> imwrite (newpic, ’newpict.png’)

= In Chapter 3, we discussed how to save a figure in a format such as png
using either print or File:Save As... from the figure window menu.
This will save the entire figure, including the border and axis labels, into
the image file. If you only want to save the image inside the axes, use
imwrite.

Animations

The simplest way to produce an animated picture is with comet, which produces a
parametric plot of a curve (the way plot does), except that you can see the curve
being traced out in time. For example,

Images, Animations, and Sound 77

>> T = (0:0.01:2) *pi;
>> figure, axis equal, axis([-1 1 -1 1]), hold on
>> comet (cos (T), sin(T))

displays uniform circular motion.

We used hold on here not to save a previous graph, but to preserve the axis
properties we had just set. Without hold on, MATLAB would revert to its
default axes, and the curve would look elliptical rather than circular as it is
being traced.

For more complicated animations, you can use getframe and movieview.
The command getframe captures the active figure window for one frame of the
movie, and movieview (available in MATLAB 6 and later) then plays back the
result in a separate window. For example, the following commands produce a movie
of a vibrating string.
>> X = 0:0.01:1;
>> for n = 0:50
plot(x, sin(n*pi/5)*sin(pi*X)), axis ([0, 1, -2, 2])
M(n+l) = getframe;

end

>> movieview (M)

The axis command here is important, to ensure that each frame of the movie is
drawn with the same coordinate axes. (Otherwise, the scale of the axes will be differ-
ent in each frame, and the resulting movie will be totally misleading.) The semicolon
after getframe is also important, in order to avoid the spewing forth of a lot of
numerical data with each frame of the movie.

Make sure that while MATLAB executes the loop that generates the
frames, you do not cover the active figure window with another window
(such as the Command Window). If you do, the contents of the other
window will be stored in the frames of the movie.

You can also use movie (which, unlike movieview, is available in MAT-
LAB 5.3) to play back the movie in the current figure window. This command
allows additional options, such as varying the frame rate; see the online help
for details.

Once you have created a movie, you can use movie2avi (in MATLAB 6 and
later) to save it as an AVI file, which is a standard format that can be used in other
movie-viewing programs, such as Windows Media Player and QuickTime. For exam-
ple, to save the movie created above to the file string.avi, type movie2avi (M,
'string.avi’).

Sound

You can use sound to generate sound on your computer (provided that your computer
is suitably equipped). This command takes a vector, views it as the waveform of a

78 Chapter 5. MATLAB Graphics

sound, and “plays” it. A “sinusoidal” vector corresponds to a pure tone, and the
frequency of the sinusoidal signal determines the pitch. Thus the following example
plays the motto from Beethoven’s Fifth Symphony:

>> x = (0:0.1:250)*pi; y = zeros(1,200); z = (0:0.1:1000) *pi;
>> sound([sin(x), y, sin(x), y, sin(x), y, sin(z*4/5), v,
sin(8/9*x), y, sin(8/9*x), y, sin(8/9*x), y, sin(z*3/4)]1);

Notice that the zero vector y in this example creates a very short pause between
successive notes.

For sound, the values in the input vector should be between —1 and 1. Within
that range, the amplitude of the vector determines the volume of the sound; to play
the sound above at half volume, you can multiply the input vector by 0.5. For a vector
with an amplitude greater than 1, you can use soundsc to rescale the vector to the
range —1 to 1 before playing it.

By default, the sound is played at 8192 samples per second, so the length of the
vector, divided by 8192, is the length of the sound in seconds. You can change the
sample rate with an optional second argument to sound; this will change both the
pitch and the duration of the sound you hear.

Finally, you can read and write sound files in MATLAB, but only in two formats:
wav and au. More popular formats such as mp3 are not available, but you may have
software that converts other formats to and from wav. The commands wavread and
wavwrite read and write this format; see the online help for details.

