

Digital Value

Introduction
Digital Value propose a solution for a no-code platform to help to create Smart Contract from Templates.

The template can build Smart Contracts to solve common problems normally found in the business. It’s

not a solution for all business case, just for the simple scenario found for several companies. The Template

engine are muti-chain and can generate code for several blockchain.

Templates are used to solve common problem that exists in many organizations and using similar

solutions. In this case we can create a template that get some data and quickly generate the code. This

approach is not adequate for all use cases and intent to solve common use cases and reduce the time to

market for a new project. Using this approach we can solve in hours a project that takes week on the

traditional workflow.

Blockchain
The Digital Value templates can work with follow networks

• Cardano

• Ethereum

• Solana

• Polkadot

• Chainlink

• Veras

Components
• Template Compiler

• Template Engine

• Template Repository

• Contract Frontend

• Smart Contract Generator

• Contract Tester

• Contract Deploy

Template Flow

To create a new Smart contract the user should follow these steps:

1. Select a pre-existing Contract Template

2. Configure the variables for the Contract

3. Generate the Smart Contract

4. Validate the Contract at Test Network

5. Publish the Smart Contract

To execute the Contract, we need to create a form template to call the Contract following these steps:

• Create a form

• Publish Form

• Execute Form

• Call Smart Contract

Use Cases

1. NFT
A non-fungible token (NFT) is a non-interchangeable unit of data stored on a blockchain, a form of

digital ledger. Types of NFT data units may be associated with digital files such as photos, videos, and

audio. Because each token is uniquely identifiable, NFTs differ from blockchain cryptocurrencies, such

as Bitcoin. NFT ledgers claim to provide a public certificate of authenticity or proof of ownership, but

the legal rights conveyed by an NFT can be uncertain. NFTs do not restrict the sharing or copying of

the underlying digital files and do not prevent the creation of NFTs with identical associated files.

Specific token standards have been created to support various blockchain use-cases. Ethereum was

the first blockchain to support NFTs with its ERC-721 standard and is currently the most widely used.

Many other blockchains have added or plan to add support for NFTs with their growing popularity.

ERC-721 provides core methods that allow tracking the owner of a unique identifier, as well as a

permissioned way for the owner to transfer the asset to others. The ERC-1155 standard offers "semi-

fungibility", as well as providing an analogue to ERC-721 functionality (meaning that an ERC-721 asset

could be built using ERC-1155). Unlike ERC-721 where a unique ID represents a single asset, the unique

ID of an ERC-1155 token represent a class of assets, and there is an additional quantity field to

represent the amount of the class that a particular wallet has. The assets under the same class are

interchangeable, and the user can transfer any amount of assets to others. Because Ethereum

currently has high transaction fees (known as gas fees), layer 2 solutions for Ethereum have emerged

which also supports NFTs. Cardano introduced native tokens that enable the creation of NFTs without

smart contracts with its March 2021 update. Cardano NFT marketplaces include CNFT and Theos.

The Solana blockchain also supports non-fungible tokens. Digital Value use the following standards

to generate NFT:

• Ethereum – OpenZeppelin

• Cardano

https://en.wikipedia.org/wiki/Blockchain
https://en.wikipedia.org/wiki/Ledger
https://en.wikipedia.org/wiki/Cryptocurrencies
https://en.wikipedia.org/wiki/Bitcoin
https://en.wikipedia.org/wiki/Certificate_of_authenticity
https://en.wikipedia.org/wiki/Title_(property)
https://en.wikipedia.org/wiki/Ethereum#Gas
https://en.wikipedia.org/wiki/Solana_(blockchain_platform)

Solana - With Metaplex we do not need to write our own contract. Metaplex has already deployed its

own standard NFT contracts that any developer can interact with and build their own NFT collections on.

It's like a smart-contract-as-a-service. Solana allows parallels transaction which makes it faster, but this

makes the code more complex, so tools like Metaplex are extremally useful.

1. Finance

2. Gaming

3. Randomness

4. Insurance

5. Enterprise Systems

6. Supply Chain

7. Utilities

8. Authorization and Identity

9. Government

10. Sustainability

11. Off-Chian Computing

Smart Contracts Standard

OpenZeppelin ERC-721
 On Ethereum, to create an NFT what we'd do is create our own custom OpenZeppelin ERC-721

Solana Metaplex
Metaplex (https://www.metaplex.com/) is the fastest and cheapest NFT ecosystem for martketplaces,

games, art & collectibles. You can own your own NFT storefront and pay only for network and storage

costs with no middleman. The cost to using this solution in January 13th, 2022

Task SOL Us$

Minting 0.01 1.47

Auction 0.03 4.40

Total 5.87 0.04

Megaplex’s non-fungible-token standard is a part of the Solana Program Library (SPL) and can be

characterized as a unique token with a fixed supply of 1 and 0 decimals. We extended the basic definition

of an NFT on Solana to include additional metadata such as URI as defined in ERC-721 on Ethereum.

https://www.metaplex.com/

Below are the types of NFTs that can be created using the Metaplex protocol.

• Master Edition - A master edition token, when minted, represents both a non-fungible token on

Solana and metadata that allows creators to control the provenance of prints created from the

master edition. Rights to create prints are tokenized itself, and the owner of the master edition

can distribute tokens that allow users to create prints from master editions. Additionally, the

creator can set the max supply of the master edition just like a regular mint on Solana, with the

main difference being that each print is a numbered edition created from it. A notable and

desirable effect of master editions is that as prints are sold, the artwork will still remain visible in

the artist's wallet as a master edition, while the prints appear in the purchaser's wallets.

• Print - A print represents a copy of an NFT, and is created from a Master Edition. Each print has

an edition number associated with it. Usually, prints are created as a part of an auction that has

happened on Metaplex, but they could also be created by the creator manually. For limited

auctions, each print number is awarded based on the bid placement. Prints can be created during

an Open Edition or Limited Edition auction.

• Normal NFT - A normal NFT (like a Master Edition) when minted represents a non-fungible token

on Solana and metadata but lacks rights to print. An example of a normal NFT would be an artwork

that is a one-of-a-kind that, once sold, is no longer within the artist's own wallet, but is in the

purchaser's wallet.

Metaplex currently supports four types of auctions that are all derived from English auctions. Basic

parameters include:

• Auction start time

• Auction end time

• Reservation price

Additionally, Metaplex includes a novel concept of the participation NFT. Each bidding participant can be

rewarded a unique NFT for participating in the auction. The creator of an auction also can configure a

minimal price that should be charged for redemption, with the option to set it as "free".

• Single Item - This type of auction can be used to sell normal NFTs and re-sell Prints, as well as the

sale of Master Edition themselves (and the associated printing rights) if the artist so wishes. While

this last behavior is not exposed in the current UI, it does exist in the protocol.

• Open Edition - An open edition auction requires the offering of a Master Edition NFT that

specifically has no set supply. The auction will only create Prints of this item for bidders: each

bidder is guaranteed to get a print, as there are no true "winners" of this auction type. An open

edition auction can either have a set fixed price (equivalent to a Buy Now sale), can be set to the

bid price (Pay what you want), or can be free (Make any bid to get it for free).

• Limited Edition - For a limited-edition auction, a Master Edition NFT (of limited or unlimited

supply) may be provided to the auction with several copies as the set number of winning places.

For each prize place, a Print will be minted in order of prize place and awarded to the winning

bidder of that place. For example, the first-place winner will win Print #1; the second-place winner

https://github.com/metaplex-foundation/metaplex#open-edition
https://github.com/metaplex-foundation/metaplex#limited-edition

Print #2; and so on. It is required for limited supply NFTs that there is at least as much supply

remaining as there are desired winners in the auction.

• Tiered Auction - A tiered auction can contain a mix of the other three auction types as winning

placements. For instance, the first-place winner could win a Print of Limited Edition NFT A, while

the second-place winner could win a Normal NFT, etc. Additionally, all participants who did not

win any place could get a Participation NFT Print from a Master Edition (if the Master Edition had

no supply limit).

Metaplex can seamlessly create on-chain artist splits that remove the awkwardness out of collaboration.

Tag each collaborator, set custom percentages, and you’re off to the races. Each NFT can also be minted

with configurable royalty payments that are then sent automatically back to the original creators

whenever an artwork is resold on a Metaplex marketplace in the future.

Metaplex's off-chain component allows creators to launch a custom storefront, similar to Shopify or

WordPress. This open-source project provides a graphical interface to the on-chain Metaplex program,

for creators, buyers, and curators of NFTs. The design and layout of storefronts can be customized to suit

the needs of the entity creating it, either as a permanent storefront or an auction hub for a specific auction

or collection.

All identification on the Storefront is based on wallet addresses. Creators and store admins sign through

their wallets, and users place bids from connected wallets. Custom storefronts allow creators to create

unique experiences per auction. Additionally, the Metaplex Foundation is working on multiple

partnerships that will enable building immersive storefronts using VR/AR.

A collection is an NFT. It has the same data layout on-chain as any other NFT. An NFT is linked to a

collection in a belongs_to style where the NFT has a reference back to the collection. This is implemented

through the addition of a new collection field in the Token Metadata struct.

pub struct Metadata {

 pub key: Key,

 pub update_authority: Pubkey,

 pub mint: Pubkey,

 pub data: Data,

 // Immutable, once flipped, all sales of this metadata are considered secondary.

 pub primary_sale_happened: bool,

 // Whether or not the data struct is mutable, default is not

 pub is_mutable: bool,

 /// nonce for easy calculation of editions, if present

 pub edition_nonce: Option<u8>,

 /// Since we cannot easily change Metadata, we add the new DataV2 fields here at the end.

 /// Collection

 pub collection: Option<Collection>,

 ...

}

#[derive(BorshSerialize, BorshDeserialize, PartialEq, Debug, Clone)]

pub struct Collection {

 pub verified: bool, // Whether or not the collection is verified

 pub key: Pubkey, // The SPL token mint account of the collection NFT

}

https://github.com/metaplex-foundation/metaplex-program-library/tree/master/token-metadata/program

As token usage has evolved on Solana, it has become clear that there are more types of tokens than simply
"fungible" and "non-fungible" tokens. Token Standards are defined by a Rust enum:

pub enum TokenStandard {

 NonFungible, // This is a master edition

 FungibleAsset, // A token with metadata that can also have attributes, sometimes called Semi

Fungible

 Fungible, // A token with simple metadata

 NonFungibleEdition, // This is a limited edition

}

Basic Single Item Auction End To End
Now that we've gone over the contracts, let's run through an example of how the

contracts interact to create an NFT and sell it. I personally find these stories the most

informative way to learn a new ecosystem.

1. Minting an NFT

On the Solana network an NFT is represented as a Token with only 1 in circulation and

further minting is disabled, but that's not very useful. A token contains very little data

about itself. In fact it doesn't even know its own name. Solana tokens are a primitive

construct that we build on top of. That's where Metaplex comes in. As we mentioned on

our Terminology Page Metaplex is the standard way to add metadata to tokens. This

metadata allows the tokens to secure Images, Audio, Video and anything else you can

dream up. In order to create an NFT using metaplex we will follow these steps:

1. Optional: Pay for the Upload

2. Creating a Token Mint

3. Optional: Creating A Token Associated Account - This is a special type of account that

allows you to receive a token or tokens made by a mint.

4. Creating A Token Metadata Account

5. Upload the Files

6. Mint one Token

7. Create Master Edition

We are breaking these steps down to make it easier to follow. Steps 1-4 happen as one

Transaction on the Solana network, and Steps 6-7 are also just one transaction. Lets dive

into each step.

Pay For the Upload

Ironically, the actual file upload is one of the last things to happen. Nothing is free, and

uploading NFT content is no exception, so we currently need a way to pay for the file(s)

to be store on Arweave. To do this we need to transfer lamports(tiny fractions of a SOL

https://docs.metaplex.com/about/terminology#non-fungible-tokens

token) to a specific wallet address. This wallet address is connected to a Web2 web

application that handles the file upload and the payment to Arweave. This step is only

needed in the frontend, as you can specify the URI without going through Arweave

Here is a visual representation of what happened

Creating the Token Mint

A token mint is how you make tokens, a mint that has a supply of 1 only allows you to

make one token. When we make the mint, we are not actually making the token, but a

container that can make tokens. In Solana, accounts are like containers for data, like a

file. To create a mint you need to creat an account in Solana that "holds" the mint.

Adding to our diagram we see the Mint created.

Creating A Token Associated Account

This step is necessary only when your wallet will need to hold the Token after the first

MasterEditionor Prints become minted. On the Metaplex frontend, currently this is needed

when you are manually uploading and creating an NFT. Without this Account your wallet

could not receive the Token.

Creating A Token Metadata Account

As we said above the steps we have gone through thus far are represented as one

transaction on the Solana network. These are called instructions, and this is the last set

of instructions before we hit the network. This step is the backbone of Metaplex. This

allows us to store additional information with a Token. There are alot of variables

needed to execute these set of instructions, lets go through them. In the frontend, the

uris are blank and then updated after the actual upload to ARWEAVE succeeds.

1. The Data - this is a blob of data that conforms to the Token Metadata Standard.

2. Your Public Key

3. A Metadata program Derived account Address - Read more about PDAs here. This is a

uninitialized address that the account will be stored at. We do this so we can

deterministically find this address again in the future.

4. The mint account public key

https://docs.metaplex.com/token-metadata/v1.1.0/specification

This adds to our ever-growing diagram to complete Transaction 1.

All these instructions are bundled up into one transaction and sent over RPC to the Solana

network. At the end of this transaction, you have completed steps 1-4 and the transaction

id that you get back from the network will help you in the next step.

Upload the Files

If you are using the frontend, after the above transaction succeeds you will get a

Transaction ID. This ID will then be used as a credential to the Web2 uploading system.

This system checks the transaction id, mint key and files for validity and size. It then

uploads them to arweave and finishes paying arweave out of the SOL you transferred to

the special upload wallet.

If you are not using the frontend then this step may not be necessary for you.

Mint One Token

Finally, the mint! We will now begin building the second transaction starting with

the MintTo instruction. MintTo needs to be passed some data to function, it needs the

following:

1. The Mint address - this is the public key of the account we made to store the mint.

2. The destination address - this is that PDA(Program Derived Address) that we used to

store the Token MetaData, and it is now the address or public key of the Token Metadata

Account.

3. Your public key - since you are the Minting Authority or Owner of the mint, you have the

ability to mint.

4. An amount, in this case 1

We will start fresh with our transaction diagram.

Create Master Edition

In Metaplex, you can make an NFT that is a true one-of-a-kind token, but you can also

use the MasterEdition construct to create Prints of the master edition, just like a

painting. You now want to label this token account as a MasterEdition NFT that has a

limited supply of 10 possible Limited Edition Prints. Cool! Remember that the point of

Metadata is to label mints - not just NFTs. To do this you call

the create_master_edition endpoint on the Token Metadata Program. By doing this,

minting authority is taken away from you, and it creates a new Master Edition PDA that

contains information about how large a supply you want to have.

Lets do a deep dive on this Program.

When you want to mint Editions now, you'll need to present a token account containing

the token from this Master Edition mint as proof of ownership and authority to do so.

Therefore, we will later hand this token over to the Auction Manager, so that it can do the

same to print off Editions for winners!

Let’s look at our transaction diagram now.

The above instructions will get bundled up into one instruction and sent to the Solana

network. Once successful your token account has a bonafide NFT Master Edition in it, we

can run an auction where we auction off Limited Edition prints! Let's say we want to

auction off three such prints.

2. The Auction

5. Next, we create a token vault using the init_vault endpoint of the token vault

contract. We'll store our master edition token in it by adding it to the vault using

the add_token_to_inactive_vault endpoint. This will create a safety deposit box

in the vault that contains the the token.

6. Then we will call the activate_vault command which Activates the vault, locking

everything inside.

7. We now Combine the vault using combine_vault, which is to say, we "open it," so

the current authority could, if they wanted, withdraw the tokens inside it. The

Auction Manager can only work with vaults in this state, which is why we have to

go through the Activation phase to get here even though it seems a little

nonsensical. See the in depth guide for more color on why these different states

exist.

8. Next up, we create the auction, and we say its resource is this vault. The auction

has not yet been started, but it has the right resource (the vault). We do this via

the create_auction command on the Auction contract.

9. Now that we have an auction and a vault, we can go and call

the init_auction_manager endpoint on the Metaplex contract with both of these

accounts among a few others to create an AuctionManager, which ties them both

together. Note that init_auction_manager takes a special struct called

AuctionManagerSettings that allows one to specify how many winners there are

and what winners get which items from which safety deposit box. At this point, we

can't yet start the auction. The AuctionManager is in an invalidated state and we

need to validate it. We do this by validating that the safety deposit boxes we

provided to it in the vault have actually what we said are in them when we provided

the AuctionManager with it's settings struct.

10. Before we begin validation, we call set_authority on both the vault and auction

to change its authority to the auction manager, so that it has control over both of

those structs. This is a requirement for the validation phase and the rest of the

contract lifecycle. Now you no longer have control over your items.

11. We call the validate_safety_deposit_box endpoint on the Metaplex contract with

the one safety deposit box in the vault, and the logic in this endpoint checks that

there are exactly 3 printing tokens from the right mint in this box, matching the 3

printing tokens we promised it would have in our AuctionManagerSettings. Once

we do this, and because this is the only safety deposit box in the vault, the

AuctionManager is now validated.

https://docs.metaplex.com/architecture/deep_dive/token_vault

12. We now call start_auction on the Metaplex contract, which, because the

AuctionManager has authority over the Auction, calls start_auction on the

Auction contract, and the auction begins!

13. Users can go and call place_bid on the Auction contract to place bids. When they

do this, tokens of the token_mint type used by the auction are taken from the

account they provide, tied to their main wallet, and stored in bidder pot accounts

in the auction contract.

14. In order to update a bid, a user must first cancel the original bid, and then place a

new bid.

15. Once the auction is over, a user can refund their bid if they did not win by

calling cancel_bid again. Winners of the auction cannot cancel their bids.

16. The winner of a bid creates a mint with decimals 0, a token account with 1 token

in it, and calls the redeem_printing_v2_bid endpoint on the Metaplex contract, all

in a single transaction. This token is now officially a Limited Edition of the "Bob's

Cool NFT" Master Edition NFT!

17. You, the auctioneer, visit /#/auction/id/billing and hit the settle button. This first

iterates over all three bidders and for each wallet used, calls claim_bid on the

Metaplex contract, which proxy-calls a claim_bid on the Auction contract, telling

it to dump the winner's payment into an escrow account called accept_payment on

the AuctionManager struct. It has the same token type as the auction. Once all

payments have been collected, the front end then calls

the empty_payment_account endpoint one time (since you are the only creator on

the Metadata being sold) and the funds in this escrow are paid out to a token

account provided of the same type owned by you.

	Digital Value
	Introduction
	Blockchain
	Components
	Template Flow
	Use Cases
	1. NFT
	1. Finance
	2. Gaming
	3. Randomness
	4. Insurance
	5. Enterprise Systems
	6. Supply Chain
	7. Utilities
	8. Authorization and Identity
	9. Government
	10. Sustainability
	11. Off-Chian Computing

	Smart Contracts Standard
	OpenZeppelin ERC-721
	Solana Metaplex

	Basic Single Item Auction End To End
	1. Minting an NFT
	Pay For the Upload
	Creating the Token Mint
	Creating A Token Associated Account
	Creating A Token Metadata Account
	Upload the Files
	Mint One Token
	Create Master Edition
	2. The Auction

