
Issue 31 | Dec 2010

Blender learning made easy

COVERART Virus -by Adam Auksel

Physics of Circular Motion

A World of Rotations

BioBlender: Blender for Biologists

Computer Simulation and Modeling of Liquid Droplets

Introduction
What is it with rotations that makes them so
frightening?

Actually rotations are very useful, and some-
times absolutely necessary. Imagine a world
without rotations... Tire manufacturers will
agree with me... Indeed, of the three kinds of
transformations (translation, rotation and
scaling), rotations are by far the most com-
plex. Let's see why.

Take the Blender default scene. Activate the
Transform panel (hotkey N). Make sure the Translate
manipulator is on, and Transform Orientation is set
to Global. Now move the default cube along the X
axis using the manipulator (red arrow). Take a look
at the Transform panel as you drag the cube. You'll
see the Location X value change as you do, while the
other values remain unchanged. OK, drop the cube
where you wish. Now do the same along the Y axis,
and you'll see Location Y change as you drag. Once
more, the rest of the values remain unchanged. Fi-
nally, you can see the same thing happens with Z
axis.

Then you can change the 3D manipulator to Scale.
Keep trying with the three axes, and you'll realize
that each modification affects only its own axis
value (Scale values). It also changes the Dimensions
values, but these are not relevant, as they refer to
the final dimensions of the mesh, not to the trans-
form properties of the object.

Rotating an object

First of all, a brief description of the Transform Ori-
entations available for the 3D manipulators in Blend-

er. View has a set of axes aligned with the viewport
direction, Normal is aligned with the normal of the
actual object data selection (like mesh faces) in Edit
Mode, and it's equivalent to Local orientation in Ob-
ject Mode, Local is aligned with the object local co-
ordinate system, and Global is aligned to the world
coordinate system. We will see later what Gimbal
means.

Once that’s said, let's start the show. First make sure
XYZ Euler is selected in the Transform panel. Try
now with the Rotate manipulator, with Global orien-
tation. Drag around the Z axis (blue ring). You can
also use hotkey R, and then Z for rotation around
the Z global axis. You can see the Rotation Z value
change as you rotate. Drop it at will. Now rotate
around any of the other two axes... What happens?
All three rotation values (X, Y and Z) change as you
drag...

We have just
discovered
that rotation
around one
axis affects
the value of
the other
two. Let's go
deeper into
this. Open
the provided
file
'RotationsWorld.blend'. There you have three simple
airplanes (fig 1).

We will use the Rotate manipulator to perform three
rotations on them: 120º around the X global axis, 60º
around Y, and 45º around Z. But we will change the
order of those rotations in each object.

3D WORKSHOP - A world of rotations 7

by- Pep Ribal

www.blenderart.org Issue 31 | Dec 2010 - "Under the Microscope"

Figure 1. Initial state

Bear in mind that positive angles mean counterclock-
wise rotations.

Start with 'PlaneA'. Use the manipulator to rotate X axis
first. Check the amount of rotation in the 3D view
header, not in the Transform panel. Use the Ctrl key to
round up the rotated value to 120º as you drag. If you
use hotkeys R and then X, you can also enter 120 with
the keyboard. Next, rotate 60º around Y axis and finally
45º around Z axis.

Now perform the same rotations on 'PlaneB' but in this
order: first 60º around Y, then 120º around X, and last,
45º around Z. When done, go for 'Plane C', using a new
order: 45º around Z, 120º around X, and 60º around Y
(figure 2). Remember to always check the rotation
amount in the 3D view header only.

OK, what do we have now? Three airplanes with a com-
pletely different orientation in space. If you take a look
at the rotation values of the three planes, only 'PlaneA'
keeps the values of the applied rotation (X=120º, Y=60º,
Z=45º), while the others hold very strange numbers.
You can see that the order of rotation is important.
Even if we use Local mode for rotation manipulators,
the problem doesn't improve (figure 3). For rotation

around X local axis for instance, you can also press R, X,
X.

In translation and scaling we can just enter the values
we wish into the Transform panel manually, as there is
only one way to interpret their meanings. But as we
have just seen, with rotations, entering the values
X=120º, Y=60º, Z=45º in the slider controls might not
yield the desired result. If we were looking for the ori-
entation of 'PlaneA', that would have been OK. But if
we wanted for instance, the rotation of any of the
other two, that wouldn't have done the trick.

We need a rotation system with a special set of axes
that lets us forget about the order, so that we can type
the three rotation angles directly in the Transform pan-
el, or use a manipulator so that each ring affects only
one axis value. And that's exactly what Blender does.
It's not using the global or local axes, as you have seen
by the strange numbers you got in the rotation values
of the objects. So what is that wonderful system that
Blender uses internally?

 83D WORKSHOP - A world of rotations

www.blenderart.org Issue 31 | Dec 2010 - "Under the Microscope"

Figure 2. After rotations around global axes.

Figure 3. After rotations around local axes.

Euler rotations

We have previously set
rotation mode to XYZ
Euler. That is exactly
what Blender is using
internally. The best
way to see these type
of rotations in action is
to set the Transform
Orientation of the 3D
manipulator to Gimbal.
This widget lets you
see the current state of
the Euler rotation
transform.

A gimbal is a circular
gadget that spins
around an axis that
goes through one of its
diameters. If you
mount three of these
one inside the other,
you have a 3-axes gim-
bal (figure 4). This kind
of device is used in gy-
roscopes, for instance.

The Blender Gimbal
rotation manipulator
closely resembles one
of these gadgets, as in
a 3-axes gimbal these
move in relation to the
others. However,
Blender gimbal is a bit
different from that, the
main difference being the axis of rotation of the rings

as you can see
in figures 5
and 6. While
the physical
gimbal rotates
around one of
its diameters
(figure 5),
each ring of
the Blender
gimbal rotates
around an axis
that goes
through the centre of the ring and is perpendicular to
all of its diameters (figure 6).

So, let's start playing with the gimbal. Take any object
with 0 rotation. Now activate the Gimbal manipulator.
Set the rotation mode to XYZ Euler (though it would
work with any other Euler type). And now start rotat-
ing the axes individually. You can repeat the experiment
of the three airplanes, and you'll get the results of fig-
ure 7. See what happens in the Transform panel.

Now, each gimbal axis is directly related to the corre-
sponding rotation value of the object. What does it
mean? That order of rotation doesn't matter. Maybe
you have realized that all three airplanes end up in the
same position using the Euler gimbal. If so, you will
have seen that all three airplanes have the same rota-
tion values in the Transform panel. In other words, you
can enter the desired rotation angles numerically in the
slider controls.

So, what's the difference between a local or global rota-
tion system and the gimbal system? And why are there
six different types of Eulers? And why am I asking all
this if I know the answer...?

93D WORKSHOP - A world of rotations

www.blenderart.org Issue 31 | Dec 2010 - "Under the Microscope"

Figure 4. A gimbal gadget.

Figure 5. Physical gimbal rotation.

Figure 6. Blender gimbal rotation.

Figure 7. After Euler rotations.

As you can see in a physical 3-axis gimbal gadget, there
are three axes configured in such a way that they form
a hierarchy. When we rotate the outermost ring, the
one on top of the hierarchy, we are actually rotating
the entire system around the axis of that ring.

Rotating the middle ring, we can see the innermost
ring rotate as well. If we rotate the innermost ring,
only that ring moves.

With Blender gimbals the same thing happens. So we
must choose one axis to be on top of the hierarchy, one
to be in the middle, and the last one to be at the bot-
tom.

Let's say we want the Z axis to be on top; the X axis to
be its child; and finally Y to be at the bottom. In other
words, Z axis will be the parent of X, and X the parent
of Y. In order from bottom to top, we have Y, X, and Z.
That forms a YXZ gimbal, used for YXZ Euler rotations.

There are six different combinations of hierarchies with
the three axis X, Y and Z, and therefore, six different
kinds of gimbals, each one of which is associated to its
corresponding Euler rotation system. With Eulers, it's
important to remember that the axis written first is the
one at the bottom of the hierarchy, while the last one
on the right is the one on top of it. Thus, in a XYZ Euler,
the Z axis in on top, while X is at the bottom.

Blender uses two things to calculate the Euler rotation
of an object. First, the values of the three rotations
around each of the three axes (X,Y and Z); and second,
what type of Euler hierarchy are these values based on.
For instance it's not the same to use a XYZ or a ZXY hi-
erarchy. You can check this by taking the rotated air-
plane. Don't change the rotation values, just change to
any of the other five Euler modes. You will immediately
see the final rotation changes.

When Blender has calculated the rotation of the object
(using the Eulers), it stores that rotation in the object
matrix, which is basically a 4x4 matrix of numbers that
keep track of the full transformation state of the ob-
ject: its location, rotation and size. When you are just
modelling (not animating), it doesn't make any differ-
ence which rotation mode you are using, as they will
all end up in the same place internally, i.e. the matrix.
No use will be made of the Euler values. However when
animating, Blender actually uses those Euler values to
interpolate rotations, as we will see later.

Any of the Euler types has the advantages of isolating
the effect of each axis, though they yield different rota-
tions. Not a big deal. It's just a question of experiment-
ing with them, and see how each type of gimbal
behaves. OK, now we have found a magical rotation
system that will make this world a better place for you
and me... So, why do we need other rotation systems?

Euler rotation problems

If we want to define any orientation, or we want to
rotate a face or a group of vertices, we can get them to
rotate wherever we want to use any of the Euler
modes. But when it comes to animation, we can run
into some trouble in certain circumstances.When you
want to animate a rotating object you have to use the
same system from one keyframe to the other. You can-
not start defining a XYZ Euler orientation for one key-
frame, and then a YZX Euler for the next one. Why?

Because Blender interpolates between two rotations
using the values of the specific system used (Euler or
any other); it doesn't use the rotation stored in the ob-
ject matrix. So if you use a different system in two con-
secutive keyframes, there is no way to calculate the
interpolation values between them.

103D WORKSHOP - A world of rotations

www.blenderart.org Issue 31 | Dec 2010 - "Under the Microscope"

Let's go for another experiment. Open the file
'RotationsWorld.blend'. Make sure that the airplanes
don't have any rotation applied, then go to frame 1 and
select ZXY Euler rotation mode. We will focus on one of
the airplanes as we are going to make it do some aero-
batics. You can delete the other two if you want.

The first thing to do will be to set the Transform Orien-
tation to Local, so that we can manipulate our airplane
easily. Bear in mind however, that even if the manipula-
tor is set to Local, Blender is using ZXY Euler internally
to compute ro-
tations and to
interpolatean-
gles, so what
Blender is actu-
ally using is the
ZXY gimbal.
Now insert a
rotation key-
frame in frame
1, with the air-
plane in rest
position (no rotations at all) as shown in figure 8.

Now let's move
to frame 25 us-
ing the arrow
keys. In this
frame, the pilot
has astonished
the audience of
the airshow by
setting the air-
plane in vertical
position. Rotate
90º around the
X local axis (remember that positive angles mean coun-
terclockwise rotations), and set a new rotation key-

frame (figure 9). Now the nose of the plane is pointing
up. You can switch from Local to Global mode to see
how the local axis has change. The "up" side of the
plane is not the same as the "up" side of the world.

OK. But the pilot, who is a really bold guy, hasn't had
enough. He
wants to make
a nice turn to
his right while
keeping the air-
craft nose up.
So now, get
back to Local
mode and go to
frame 50. Then
use the manipu-
lator to rotate
the airplane 90º
around the Y
local axis. Set a new rotation keyframe (figure 10).

Now rewind to frame 1, and check the full animation
using the arrow keys back and forth. You'll see that
from keyframe 1 (frame 1) to keyframe 2 (frame 25) eve-
rything works as expected. But something weird hap-
pens between keyframe 2 and keyframe 3 (frame 50).
We expect a right turn, but the airplane nose actually
makes a weird movement.

To check what the problem was, set Gimbal orienta-
tion, rewind to frame 1, and check the animation again.
As you approach frame 25, the Z rotation axis of the
manipulator gets closer and closer to Y axis. At frame
25, the Z axis is completely aligned with the Y axis, as
shown in figure 11.

113D WORKSHOP - A world of rotations

www.blenderart.org Issue 31 | Dec 2010 - "Under the Microscope"

Figure 8. Keyframe 1 (local axes shown).

Figure 9. Keyframe 2 (local axes shown).

Figure 10. Keyframe 3 (local axes shown).

We have just
lost one axis of
movement. This
phenomenon is
known as the
Gimbal lock,
and it's a very
typical source of
headache for
animators.

You may have
found that your
animated rota-
tions behave in
a weird manner (it has indeed happened to me), and
there is no way to fix them no matter what you do to
avoid the problem. Well, it's more than likely that you
have been a victim of the hideous gimbal lock (ock...
ock... ock...).

So, back to our airplane. We are nose up, and we have
lost an axis to perform a right turn. For doing that kind
of turn, we would need to get our Z axis back. Well, if
you check the interpolation values of the animation
between keys 2 and 3, you will realize that this is ex-
actly what Blender does. While the Y axis rotates the
commanded 90º, it also undoes the initial 90º rotation
in the X axis (which caused the gimbal lock), and ro-
tates 90º around the Z axis so that the final position
can be reached.

The end result is the weird movement of the airplane.
Unfortunately, that caused the audience to go back
home, and the airshow resulted in a complete failure.
Let's try to see when gimbal lock occurs, taking into
account the type of Euler rotation we choose, so that
we can avoid it.

We know there are three rotation axes in a gimbal.
When all three axes are perpendicular between them,
all is fine. However, as one of the axes starts to move
towards another, they lose their relative perpendiculari-
ty, meaning that we are starting to lose some degree of
freedom of movement. The problem reaches its maxi-
mum when two axes become completely aligned
(parallel), that is, when we completely lose one of the
three axes.

Let's take for instance a XYZ Euler gimbal. What hap-
pens when the axis at the bottom of the hierarchy (in
this case, X) rotates? Nothing important actually. All
three axes keep perpendicular whatever rotation you
apply to the X axis, which just keeps spinning around
itself.

What if we rotate the topmost axis in the hierarchy (Z)?
Then all the axes in the system rotate with it, keeping
their relative positions, without losing freedom of
movement like before. The problem comes when we
rotate the axis in the middle (Y). Its effect is to get its
child axis (X) closer to its parent axis (Z). That said, one
important thing to remember is that the middle axis in
the Euler hierarchy is crucial, and we need to keep an
eye on it most of all.

Now that we know when gimbal lock is reached, we
can see how to avoid it. So, if you need an object to
perform an animation with a series of rotations in
which its Z axis will reach angles close to 90º (or equiv-
alent angles like -90º or 270º), we will avoid the use of
Euler rotation systems XZY and YZX, as in these, Z axis
lays in the middle of the hierarchy.

However, we could still use XZY Euler even if the Z axis
reaches 90º, but only if in those particular moments we
don't need the X axis to rotate. We need to make sure
that as soon as we need rotations around the X axis, Z
rotation is far from 90º (and equivalents).

123D WORKSHOP - A world of rotations

www.blenderart.org Issue 31 | Dec 2010 - "Under the Microscope"

Figure 11. Keyframe 2 (gimbal shown)
Where is the Z axis...? Perfect gimbal lock

If you want to perform the former aerobatics, you can
choose a different Euler system. For instance, you can
repeat the ex-
periment with a
XYZ Euler sys-
tem, and you
will see every-
thing working
fine.

When you are
done with it,
you can take a
look at the re-
sulting anima-
tion curves in
the Graph editor
(figure 12). See how intuitive those f-curves are. You
can see a 90º rotation around the X axis take place be-
tween frame 1 and 25, and another 90º rotation around
the Z axis between frames 25 and 50.

This is one of the big advantages of the Euler rotations
as you can directly manipulate the rotation f-curves
easily, knowing that the curves are independent be-
tween them. Those three curves give you a clear pic-
ture of what's going on, even if you don't see the actual
object.

In this case all you have to do is keep an eye on the
green curve (Y axis) and make sure it doesn't approach
90º when the red curve (X axis) is different than zero.

OK, but is there any rotation system which doesn't suf-
fer from gimbal lock...?

Sure there is.

Axis Angle rotations

If you set the rotation mode to Axis Angle, you will no-
tice that you now have 4 values for defining rotations:
X, Y, Z and W.

With Euler we had 3
values representing a
rotation angle
around each axis.
With axis-angle we
define two things:
one axis and one an-
gle. The axis is de-
fined by X, Y and Z;
the rotation angle, by
W. You can see that
in figure 13.

The effective rotation is done around the axis (X,Y,Z).
This axis is an infinite line that goes through the centre
of the object and the point defined by (X,Y,Z) in the lo-
cal coordinate system of the object. There are many
ways to define the same axis. The most important thing
is the ratio between these three values. Thus, (1,0.5,3) is
the same axis as (2,1,6).

So once we have this rotation axis, all we have to do is
to make the object rotate around it by the amount
given in the W value. So if W=0, no rotation is applied,
regardless of the values in X, Y and Z. Conversely, if X, Y
and Z equal 0, no axis is defined, so once more, there
will be no rotation regardless of the W value.

You can easily see that the most obvious advantage of
axis-angle is rotation around an arbitrary axis. This
makes axis-angle very suitable for objects that spin con-
stantly around the same axis. The rotation of Earth
around its peculiar axis is a perfect example.

133D WORKSHOP - A world of rotations

www.blenderart.org Issue 31 | Dec 2010 - "Under the Microscope"

Figure 12. Euler rotations: animation
curves.

Figure 13. Axis-angle rotation.

Bear in mind that negative values matter in the axis
definition, as axes have a direction. Two axes defined
with opposite direction (simply changing the signs of X,
Y, and Z) will have an opposite direction, and so, an in-
verse rotation. So changing the sign of all four values
(axis and angle) has no effect on the final orientation
(except for animation purposes).

One thing to note is that angle values in W are ex-
pressed in radians, not degrees. In that case, if you
want to perform a 90º turn, you must rotate /2 in the
W slider control. It's possible to type pi directly in the
sliders as Blender knows its value (around 3.141592).
You just need to know that 360 degrees are equivalent
to 2x radians, so that you can calculate other angles.
You can directly enter values like pi/2, 3*pi/2, 2*pi, pi,
etc. Anyway, manipulators and hotkey R always use
degrees.

OK, now that we know what axis-angle is, it's time to
play with it.

You can repeat the aerobatics experiment from scratch.
Set rotation mode to Axis Angle, and redo the three key-
frames using the 3D manipulator of choice, or hotkey
R. Play the animation back.

What happens? Nothing good really.

Axis-angle rotation problems

As mentioned before, axis-angle works well for rota-
tions around a fixed axis. So our aerobatics is not the
best example to use. Let's see why it didn't work out
smoothly (by now the pilot is depressed and already
thinking about retiring).

What happened here is that from keyframe 1 to key-
frame 2, two things were interpolated. First we went
from axis (0,1,0) to axis (1,0,0). This axis movement is

quite big, as it's going from one line to a perpendicular
one (90º away). And second, we went from angle 0 to
angle /2 (90º). So two things were moving the same
amount: the axis and the angle.

Once again, let's go back to frame 1. Instead of axis
(0,1,0), let's enter (1,0,0). It makes no difference, as the
rotation angle value W is 0. Now update the keyframe
and see how it goes.

Everything runs quite fine now. The second half is not
perfect, but quite acceptable. Why isn't it perfect? It's
important that between two consecutive keyframes
most of the movement is taken by only one of the com-
ponents: either the axis or the angle. In our initial air-
plane movement, both components were moving the
same amount (90º), and that created a turbulent move-
ment that made the pilot sick. Then we completely
fixed the problem by keeping the axis still between key-
frames. In the second half of the animation, the angle
moves more than the axis, which is good, but both of
them move.

If you want absolutely perfect movements, just move
only one of the two components between two consecu-
tive keyframes (usually the angle). Sometimes this is
difficult, so the best thing in those situations is to start
considering any other rotation system.

In axis-angle, rotation manipulators have to be used
with special care, as they can lead to unwanted results.
A simple rotation using the manipulator can lead, for
instance, to the flipping (sign change) of the axis. If the
initial axis is (0,1,0) and the final one results in (0,-1,0),
that will produce, most probably, undesired effects, as
we are changing its direction, which means a 180º rota-
tion of the axis (not around the axis).

143D WORKSHOP - A world of rotations

www.blenderart.org Issue 31 | Dec 2010 - "Under the Microscope"

Moreover, in axis-angle you can define axes and angles
using any value, as big or small as you want. Rotations
can consist of several spins around the axis, that is,
Nx2 , where N is any number of revolutions, positive
or negative. However, when using rotation manipula-
tors you will always get axis values up to 1.0, and an-
gles up to 2 .

This, along with the possible axis flip, are good reasons
to prefer editing rotation values directly on the Trans-
form panel over using rotation manipulators or hotkey
R.

To summarize, axis-angle is good for rotations around
an arbitrary axis, as long as that axis doesn't keep mov-
ing, or at least its movement is really controlled. Re-
member that you can quickly move the axis to any
value when rotation angle is 0 so that moment can be
used to switch from one axis to another.

Now that you
are done with
the new air-
show animation
using axis-angle,
take a look at
the resulting
animation
curves (figure
14)... What can
you see?

Yeah, right. Just
curves. It's actu-
ally very difficult to know how they translate visually.
While with Eulers we could grasp the meaning of the
F-curves, now it's difficult to tell how the object is ro-
tated.

Wouldn't it be nice, however, to have a rotation system
which, while keeping its immunity to gimbal lock, at
the same time produced perfect and smooth rotation
interpolations, and not just fixed-axis ones?

Yeah, that would be awesome...!

Quaternion rotations

Quaternions were discovered by the Irish mathemati-
cian Sir William Rowan Hamilton.

According to the Wikipedia, "the breakthrough finally
came on Monday 16 October 1843 in Dublin, when
Hamilton was on his way to the Royal Irish Academy
where he was going to preside at a council meeting.
While walking along the towpath of the Royal Canal
with his wife, the concept behind quaternions was tak-
ing shape in his mind. Hamilton could not resist the
impulse to carve the formulae for the quaternions

i2 = j2 = k2 = ijk = - 1

into the stone of Brougham Bridge as he passed by it."

This reminds me of the day I was walking along the
streets of my home town, and it came to my mind a
recipe of beans with mushroom sauce. Immediately I
took my chisel and hammer (I always bring them in my
pockets, just in case). I couldn't resist carving the rec-
ipe into a stone of my neighbour's wall... Surprisingly,
Wikipedia didn't mention that. My neighbour however,
did mention it to his lawyer (he is allergic to mush-
rooms).

Back to quaternions, you can just forget about the for-
mulae that Hamilton carved. Actually, you can forget
about most of the maths around quaternions (unless
you are a mathematician, a 3D software developer, or
just very interested in Algebra).

153D WORKSHOP - A world of rotations

www.blenderart.org Issue 31 | Dec 2010 - "Under the Microscope"

Figure 14. Axis-angle rotations: animation
curves.

www.en.wikipedia.org/wiki/Quaternion

A quaternion is a vector, i. e. a set of numbers, in a spe-
cific 4-dimensional space. In this case, this vector has
four numbers. These four numbers are called X, Y, Z and
W in Blender. Just check it in the Transform panel, set-
ting Quaternion (WXYZ) rotation mode... Doesn't it re-
mind you of something?

Of course, axis-angle has the same component names.
So are these values related somehow to the corre-
sponding axis-angle values? Absolutely. Let's see the
differences, though.

In the first place, a quaternion can represent a rotation
only if it is normalized, which means that the length
(or modulus) of the vector must be 1 (this is called a
unit vector). What does it mean in practice? Mathemat-
ically:

W2 + X2 + Y2 + Z2 = 1

This formula is not too useful for 3D artists. However it
might help to understand how these four values relate
to each other. In the first place, none can have an abso-
lute value greater than 1. Second, when one value in-
creases (in absolute value), the rest decrease, and vice
versa. Absolute value means to forget about the sign,
i.e., the absolute value of -0.75 is 0.75. So, all four val-
ues range from -1.0 to 1.0.

Now we know how quaternion values relate and affect
each other. But what do they actually mean? Do they
have the same meaning as in axis-angle? Well, actually
they do. In a quaternion, X, Y and Z are still defining the
same axis of rotation that axis-angle does, and W is de-
fining an angle of rotation around that axis.

There is one unique (normalized) way to define a given
rotation using a quaternion. On the other hand, in axis-
angle you could define the same axis using many differ-
ent combination of values, as the vector representing

that axis didn't have to be normalized. Bear in mind
though, that even in Axis Angle mode the rotation ma-
nipulator and the R hotkey also normalize the (X,Y,Z)
vector.

Another question arises here; what units is W using to
describe an angle, as it can only range from -1.0 to 1.0?
To understand the correspondence between the axis-
angle W value and the quaternion W value, we will call
the first AW, and the second QW. Its relation is as fol-
lows:

QW = cos (AW / 2)

If you know what a cosine function is, great. If not,
don't worry the slightest bit. The only thing you should
be aware of is how quaternion W behaves in relation to
axis-angle W (the actual angle of rotation around the
axis). The following table has a few examples that
might help you:

You could think after seeing this table, that if a
quaternion with W=1 is equivalent to a 0º angle, and
with W=0 it represents 180º, then 90º should corre-
spond to W=0.5. Actually it doesn't work like this, as
you can see in the table, as the cosine doesn't behave
like a linear function.

163D WORKSHOP - A world of rotations

www.blenderart.org Issue 31 | Dec 2010 - "Under the Microscope"

Quaternion W Angle in radians Angle in degrees

1.000 0 0

0.707 / 2 90

0.000 180

-0.707 3 x / 2 270

-1.000 2 x 360

It actually behaves in a more "circular" way, which is
much more suitable for rotations. Observing the table,
you can think there is no way to use a quaternion to
define a rotation beyond 360º, or below 0º. You think
well. This is a small drawback of quaternions, but later
we will see how to overcome it.

So let's try to see how a quaternion works. Open
'RotationsWorld.blend' once more and select one of the
airplanes. Set rotation mode to Quaternion (WXYZ). Ini-
tially, W has value 1.0, which means a rotation of 0º, so
we don't need any rotation axis. It doesn't matter then
if X, Y and Z are all zero.

Now increase the value of X slightly, clicking on the
right triangle in the X slider of the Transform panel. See
what happens. We have just defined an axis; a point in
the direction of the X axis defines the X axis itself. If we
keep increasing the X value, we are still defining the
same axis, however W decreases. The bigger the value
of X, the smaller the value of W. In other words, we are
rotating around X axis, as W keeps decreasing towards
0, i. e. towards 180º (see the table). When X reaches 1,
W is 0, which means a rotation of 180º around the X
axis.

So the effect of increasing the value of X is to bring the
object to this position; upside down around the X axis.
Now clear the rotation. You can repeat the same exper-
iment with Y and Z values. As you will see, all of them
try to bring the object upside down around their own
axis.

On the other hand, what is the effect of making W big-
ger? Obviously to take the object away from those up-
side down positions, and preserve the original position
with no rotations at all. The balance between the four
values is what defines the final rotation.

If you repeat the experiment using negative values, you
will see the same effect but in the opposite rotation
direction. Take for instance the experiment around the
X axis, but this time taking it slowly towards -1.0. We
are defining the same rotation values (W is still posi-
tive) but applied around an axis that runs along the X
axis in the opposite direction. This is similar to what
happened with axis-angle. In this case also, changing
the sign of all four values has no effect on the final ro-
tation. And with quaternions, it doesn't have an effect
on animation interpolations either.

Even if in theory W cannot hold a number correspond-
ing to a negative angle, changing its sign works in a
similar fashion. For instance, W=0.707 represents a 90º
rotation, while W=-0.707 is 270º, which is in fact equiv-
alent to -90º (270º=360º-90º).

Now that we know what a quaternion is and how it
works, we are ready to repeat the airshow. Set the
three keyframes once more using Quaternion (WXYZ)
mode. What happens now?

An incredible aerobatic manoeuvre. The audience is
shouting, jumping, hugging, laughing...! The best show
ever! And all thanks to Sir Hamilton and his magic chis-
el...

What about quaternion animation curves? Take a look
at them (figure 15)... What do you think? Yeah, awful.
Forget about animating those evil f-curves... And there
is more. In quaternion f-curves, Linear Extrapolation
doesn't work well. Since the quaternion must be nor-
malized, its values can't keep growing forever. The rela-
tion between the four values ends up reaching a
normalized balance, and so the rotation slowly stops at
that point.

You have seen the main advantage of quaternions: its
absolute smoothness and perfection in interpolations,

173D WORKSHOP - A world of rotations

www.blenderart.org Issue 31 | Dec 2010 - "Under the Microscope"

no gimbal lock, no weird movements, etc. However, we
have seen a drawback: the inability to define more than
one revolution, or negative angles. Let's see an exam-
ple. Open a Blender scene and take any unrotated ob-
ject (our good old airplane will do).

Choose Quaternion (WXYZ) rotation mode. Set a key-
frame in frame 1, without rotation. Go to frame 25. Ro-
tate it 200º counterclockwise around Z axis. Set the
rotation key. Check the animation. What happens?
Blender actually interpolates using a clockwise rota-
tion!

Blender has chosen the shortest path between 0º and
200º, which is equivalent to -160º. Quaternions can't
define revolutions (successive spins around an axis).
They just define orientations in space; from 0º to 360º,
where 0º is equivalent to 360º (value 1 is equivalent to
-1 for X, Y, Z and W parameters). Blender always per-
forms the shortest path rotation between one orienta-
tion and the next if you use the rotation manipulators
or hotkey R. This means you can't rotate 180º or more
between two keyframes using those. But you can get
bigger angles by directly editing the Transform panel
values. However you will never get a 360º or bigger ro-
tation.

If you want to overcome this, and make the object spin
several times, you have to set intermediate keyframes
between the initial and final state, so that turns be-
tween them are smaller than 360º (or -360º for clock-
wise rotation). If you use manipulators, turns must be
less than 180º (or -180º).

Gimbals and locks

No, we are not going to talk about gimbal lock any-
more. Just about gimbals, and component locks in ei-
ther quaternion and axis-angle rotations.

Provided that nei-
ther of these two
systems use Euler
gimbals, what is
the meaning of
the Gimbal orien-
tation of the 3D
manipulators?

In Axis Angle, you
will see that Gim-
bal aligns its Z
component with
the defined axis (X,Y,Z), so that if you rotate the manip-
ulator blue ring (Z axis) you will be directly controlling
the W value, and just the W value. However, if you
want negative values, or values beyond 2 , you must
edit the W value in the Transform panel.

On the other hand, when using quaternions you can
see that Gimbal currently has no special meaning and
is equivalent to the Local orientation. Perhaps future
releases of Blender will give it a special use.

Regarding the lock buttons in the Transform panel,
their use is to restrict rotations (and locations/scaling)
to only the desired axes using the 3D manipulators or
hotkey R. However, in the specific case of rotations, if
you activate the 4L button, you can restrict rotations by
axis-angle or quaternion component instead of axis.

As they have 4 components (X, Y, Z, W), you get an extra
lock. However, in the specific case of quaternions, re-
member that even changing just one of the compo-
nents will affect the other three as the final vector
must be normalized.

183D WORKSHOP - A world of rotations

www.blenderart.org Issue 31 | Dec 2010 - "Under the Microscope"

Figure 15. Quaternion rotations: anima-
tion curves.

Summary

· Local or global rotation systems aren't valid for
computing rotations as the order of rotation around
the three axes affects the final result.

· Euler rotation systems use a hierarchy of rotation
axes which is valid to compute rotations, as the
three rotation components are independent. How-
ever they suffer from gimbal lock in certain circum-
stances.

· Axis-angle doesn't suffer from gimbal lock, but its
use is almost specific to revolving around a fixed
axis.

· Quaternion system doesn't suffer from gimbal lock,
and interpolates perfectly any pair of orientations.
However it can't define successive revolutions un-
less we insert intermediate keyframes in between.
As it's a perfect way to define orientations in space,
it is very suitable for bones animation.

· Regarding animation curves, the Euler system is the
only one that provides an easy and intuitive way to
edit them.

And finally...

There are a couple videos around there that might help
you see rotations in action. Check the Guerrilla CG
Project website (guerrillacg.org). Watch the following
videos: The Rotation Problem, and Euler Rotations Ex-
plained. One warning, though: in the first of these vid-
eos there is a small mistake; whenever 'Quaternion' is
mentioned, it should actually say 'Axis Angle'.

There are other 3D software packages out there that
use other rotation systems, like the Heading/Pitch/Bank

(or Yaw/Pitch/Roll) angles, used with the so called Tait-
Bryan or cardan angles, which are a different kind of
Euler rotations. But this stuff is out of the scope of this
article as Blender doesn't use them

I hope not to have made your head rotate too much.

Be good!

193D WORKSHOP - A world of rotations

www.blenderart.org Issue 31 | Dec 2010 - "Under the Microscope"

http://www.guerrillacg.org

