
BlockAudit

1

Table of contents

Introduction 2-3

Findings 4-11

DIsclaimer 12

aPPENDIX

About

10

14

Summary


Overview 

2


3

Finding Overview


GUEST01


GUEST02


GUEST03


GUEST04


4


5


6


7


9





Overview

Project Name

ID File Name Audit Status

GUEST-Guest.solGUEST

Project Summary

File Summary

Audit Summary

Platform

Logo

Language

Code Link

Guest TOKEN

 AVAX

Solidity

https://snowtrace.io/

address/0x892bb36c427b6e64ab5d1d155e7c8a0b1791b28b

BlockAudit

3

Date of Delivery

Audit Methodology

Audit Team

Audit Result

14 Feb 2021

Code Analysis. Automatic Assesment, Manual Review

BlockAudit Report Team

Failed

Failed

https://snowtrace.io/address/0x892bb36c427b6e64ab5d1d155e7c8a0b1791b28b
https://snowtrace.io/address/0x892bb36c427b6e64ab5d1d155e7c8a0b1791b28b


BlockAudit

4

Findings

Type

Unchecked Transfer

Reentrancy

Divide before multiply


Missing zero address validation

High

High

Reported

Reported

Reported

Reported

84

79-93

73

68 / 69 / 70 / 72

Line Severity StatusID

GUEST01

GUEST02

GUEST03

GUEST04

Vulnerability Findings Summary

Low

Medium

Critical


High


Medium


Low


Informational


Ownership


Gas Optimization

0


2


0


2


0


0


0

0.0%


50.0%


0.0%


50.0%


0.0%


0.0%


0.0%

04
Issues Found



BlockAudit

5

GUEST01

The return value of an external transfer/transferFrom call is not checked, Several 

tokens do not revert in case of failure and return false. If one of these tokens is 

used in this contract, the function will not revert if the transfer fails, and an 

attacker can call it for free

Use SafeERC20, or ensure that the transfer/transferFrom return value is checked.


Type

File

Severity

Line

Status

Unchecked Transfer

Guest.sol

84

Reported

High

Description

Remediation

Snapshot



BlockAudit

6

GUEST02

claimReward(uint256) performs state variable changes after external calls, 
making it a potential target for a reentrancy attack if the inputs are malicious 
contracts.

Type

File

Severity

Line

Status

Reentrancy

Guest.sol

79-93

Reported

Description

Update all bookkeeping state variables before transferring execution to an 
external contract or use Openzeppelin’s ReentrancyGuard.


Remediation

Snapshot

High



BlockAudit

7

GUEST03

Solidity integer division might truncate. As a result, performing multiplication 

before division can sometimes avoid loss of precision.


Type

File

Severity

Line

Status

Divide before multiply



Guest.sol

73

Reported

Description

In general, it's usually a good idea to re-arrange arithmetic to perform 

multiplication before division, unless the limit of a smaller type makes this 

dangerous.

Remediation

Snapshot

Medium



BlockAudit

8

GUEST04

constructor(address,address,address,address,string) does not check if inputs are 
zero addresses, So if Bob inputs zero addresses. funds can be lost.


Type

File

Severity

Line

Status

Missing zero address validation

Guest.sol

68 / 69 / 70 / 72

Reported

Low

Description

Check for zero address validation

Remediation

Snapshot



BlockAudit

9

The Block Audit Report team has performed rigorous testing of the project including 
the analysis of the code design patterns where we reviewed the smart contract 
architecture to ensure it is structured along with the safe use of standard inherited 
contracts and libraries. Our team also conducted a formal line by line inspection of 
the Smart Contract i.e., a manual review, to find potential issues including but not 
limited to

In the Unit testing Phase, we coded/conducted custom unit tests written against each 
function in the contract to verify the claimed functionality from our client.
In 
Automated Testing, we tested the Smart Contract with our standard set of 
multifunctional tools to identify vulnerabilities and security flaws.
The code was 
tested in collaboration of our multiple team members and this included but not 
limited to;

� Testing the functionality of the Smart Contract to determine proper logic has been 
followed throughout the whole process.�

� Analyzing the complexity of the code in depth and in detail line-by-line manual 
review of the code�

� Deploying the code on testnet using multiple clients to run live tests.�
� Analyzing failure preparations to check how the Smart Contract performs in case 

of any bugs and vulnerabilities.�
� Checking whether all the libraries used in the code are on the latest version.�
� Analyzing the security of the on-chain data.

� Race conditions�
� Zero race conditions approval attacks�
� Re-entrancy�
� Transaction-ordering dependence�
� Timestamp dependence�
� Check-effects-interaction pattern (optimistic accounting)�
� Decentralized denial-of-service attacks�
� Secure ether transfer pattern�
� Guard check pattern�
� Fail-safe mode�
� Gas-limits and infinite loops�
� Call Stack depth

Auditing Approach and Methodologies applied

Appendix



BlockAudit

10

Every issue in this report was assigned a severity level from the following:

Issue Categories:

Issues of Critical Severity leaves smart contracts vulnerable to major exploits and can lead to asset 

loss and data loss. These can have significant impact on the functionality/performance of the smart 

contract.


We recommend these issues must be fixed before proceeding to MainNet.. 

Critical Severity Issues

Issues of High Severity are not as easy to exploit but they might endanger the execution of the 

smart contract and potentially create crucial problems. 


Fixing these issues is highly recommended before proceeding to MainNet. 

High Severity Issues

Issues on this level are not a major cause of vulnerability to the smart contract, they cannot lead to 

data-manipulations or asset loss but may affect funtionality.


It is important to fix these issues before proceeding to MainNet. 

Medium Severity Issues

Issues at this level are very low in their impact on the overall functionality and execution of the 

smart contract. These are mostly code-level violations or improper formatting. 


These issues can be remain unfixed or can be fixed at a later date if the code is redeployed or 

forked. 

Low Severity Issues

These are finding that our team comes accross when manually reviewing a smart contract which 

are important to know for the owners as well as users of a contract.


These issues must be acknowledged by the owners before we publish our report. 

Informational Findings

Owner of a smart contract can include certain rights and Privileges while deploying a smart 

contract that might be hidden deep inside the codebase and may make the project vulnerable to 

rug-pulls or other types of scams. 


We at BlockAudit believe in transparency and hence we showcase Ownership Privileges separately 

so the owner as well as the investors can get a better understanding about the project. 

Ownership Privileges

Solidity gas optimization is the process of lowering the cost of operating your Solidity smart code. 

The term "gas" refers to the level of processing power required to perform specific tasks on the 

Ethereum network.



Each Ethereum transaction costs a fee since it requires the use of computer resources. It will 

deduct a fee anytime any function in the smart contract is invoked by the contract's owner or users.

Gas Optimization




